Regular expressions are a notation for specifying (denoting) languages. A regular
expression defines/denotes/specifies a langue (a set of strings).

Regular expressions constitute a recursively defined set:

Base cases Recursive cases

0 rls (in the book as r Us)
€ rs

aecx r*

A language for which there exists a regular expression that generates it is called
regular. We can talk of the set (or class) of regular languages.

Theorem (Lemma?) 2.3.1: The class of languages accepted by finite automata is
closed under union, concatenation, Kleene star, complementation, and intersection.

Rewritten:

If L1 and Ly are in the set of languages accepted by DFAs/NFAs, then so are
Ly ULy LiL, Lq* E and LiNLy

Analyzed in terms of quantification:

A L1,L2, if 3 Ml,M2 | L(Ml) = L1 and L(Mg) = L2
then 4 Mj | L(M3) =L1UL (etc)

Main result:
Theorem 2.3.2: A language L is regular iff 3 M € NFA such that L(M) = L.

Corollary:

Set of Set of Set of
regular = NFA = DFA
languages languages languages

Theorem 2.3.2: A language L is regular iff 3 M € NFA such that L(M) = L.

Proof (outline). (=) Suppose t is a regular expression.

Base cases. Suppose t = ¢
Suppose t = ()

Supposet =a € X

Inductive cases. Suppose t = r|s We know by induction that there
exist My and M> such that
L(My) =r and L(M;) = s.

Theorem 2.3.2: A language L is regular iff 3 M € NFA such that L(M) = L.

Proof (outline) continued. (<) Suppose M € NFA. [We need to construct
a regular expression that generates the language that M accepts.]

Label the states of M q1, qo, ... q, arbitrarily except that s = q;.

Consider the set of state-transition paths from q; to q; that do not include any
state gy for x > k.

Let R(i,j, k) be the set of strings that drive the machine from q; to q; without
stopping at any state qx for x > k.

For any q; and q;j, show that R(i, j, k) is regular by induction on k.
Hence R(1,j,|K|) is regular for any q; € F. Therefore L(M) is regular. []

News of the day: Not all languages are regular.

Non-constructive proof: The set of languages is uncountable, but the set of regular
expressions is countable. Hence some languages can't be specified by a regular
expression.

Theorem 2.4.1: Let L be a regular language. There is an integer n > 1 such that any
string w € L with |w| > n can be written as w = xyz such that y # ¢, |xy| < n, and
xy'z € L for each i > 0.

Theorem 2.4.1: Let L be a regular language. There is an integer n > 1 such that any
string w € L with |w| > n can be written as w = xyz such that y # ¢, |xy| < n, and
xy'z € L for each i > 0.

This is a pumping theorem:
Proof (sketch). Let M be a DFA that accepts L. Suppose w € L and w is
at least as long as the number of states in M.

At least one state is repeated in the transition sequence, some q; = qj. Let
xyz = w where x is the prefix of w from s to q;, y is the substring of w from
qi to qj, and z the suffix of w from q; to f € F.

When the machine gets back to q; = qj, it could accept another copy of y—or
it could have not had y in the input string at all.

HenceV i,i > 0,xy'ze L. O

(O <& <

Hao

(O <& <

Hao

