Regular expressions are a notation for specifying (denoting) languages. A regular expression defines/denotes/specifies a langue (a set of strings).

Regular expressions constitute a recursively defined set:

A language for which there exists a regular expression that generates it is called regular. We can talk of the set (or class) of regular languages.

Theorem (Lemma?) 2.3.1: The class of languages accepted by finite automata is closed under union, concatenation, Kleene star, complementation, and intersection.

Rewritten:

If L_1 and L_2 are in the set of languages accepted by DFAs/NFAs, then so are

 $L_1 \cup L_2$ L_1L_2 L_1^* $\overline{L_1}$ and $L_1 \cap L_2$

Analyzed in terms of quantification:

$$
\forall L_1, L_2, \text{ if } \exists M_1, M_2 \mid L(M_1) = L_1 \text{ and } L(M_2) = L_2
$$

then $\exists M_3 \mid L(M_3) = L_1 \cup L_2 \text{ (etc)}$

KOD KAR KED KED E VOOR

Main result:

Theorem 2.3.2: A language *L* is regular iff $\exists M \in NFA$ such that $L(M) = L$. Corollary:

Theorem 2.3.2: A language L is regular iff $\exists M \in NFA$ such that $L(M) = L$. **Proof (outline).** (\Rightarrow) Suppose t is a regular expression. **Base cases.** Suppose $t = \varepsilon$ Suppose $t = \emptyset$

Suppose $t = a \in \Sigma$

Inductive cases. Suppose $t = r/s$ We know by induction that there

exist M_1 and M_2 such that $L(M_1) = r$ and $L(M_2) = s$.

Theorem 2.3.2: A language L is regular iff $\exists M \in NFA$ such that $L(M) = L$.

Proof (outline) continued. (\Leftarrow) Suppose M \in NFA. [We need to construct a regular expression that generates the language that M accepts.]

Label the states of M $q_1, q_2, \ldots q_n$ arbitrarily except that $s = q_1$.

Consider the set of state-transition paths from q_i to q_i that do not include any state q_x for $x > k$.

Let $R(i, j, k)$ be the set of strings that drive the machine from q_i to q_i without stopping at any state q_x for $x > k$.

For any q_i and q_j , show that $R(i,j,k)$ is regular by induction on k.

Hence $R(1, j, |K|)$ is regular for any $q_i \in F$. Therefore $L(M)$ is regular. \square

News of the day: Not all languages are regular.

Non-constructive proof: The set of languages is uncountable, but the set of regular expressions is countable. Hence some languages can't be specified by a regular expression.

Theorem 2.4.1: Let L be a regular language. There is an integer $n > 1$ such that any string $w \in L$ with $|w| \ge n$ can be written as $w = xyz$ such that $y \ne \varepsilon$, $|xy| \le n$, and $xy^iz\in L$ for each $i\geq 0.$

KORK EXTERICATE AGA

Theorem 2.4.1: Let L be a regular language. There is an integer $n \geq 1$ such that any string $w \in L$ with $|w| \ge n$ can be written as $w = xyz$ such that $y \ne \varepsilon$, $|xy| \le n$, and $xy^iz\in L$ for each $i\geq 0.$

This is a pumping theorem:

Proof (sketch). Let M be a DFA that accepts L. Suppose $w \in L$ and w is at least as long as the number of states in M.

At least one state is repeated in the transition sequence, some $q_i=q_j$. Let $xyz=w$ where x is the prefix of w from s to q_i , y is the substring of w from q_i to q_j , and z the suffix of w from q_j to $f \in F$.

When the machine gets back to $q_i = q_j$, it could accept another copy of y-or it could have not had y in the input string at all.

KORK STRAIN A STRAIN A COLL

Hence $\forall i, i \geq 0, xy^i z \in L$. \Box

Kロトメ部トメミトメミト ミニの女々

Kロトメ部トメミトメミト ミニの女々