
Regular expressions are a notation for specifying (denoting) languages. A regular
expression defines/denotes/specifies a langue (a set of strings).

Regular expressions constitute a recursively defined set:

Base cases Recursive cases

∅ r |s (in the book as r ∪ s)
ε r s
a ∈ Σ r*

A language for which there exists a regular expression that generates it is called
regular. We can talk of the set (or class) of regular languages.



Theorem (Lemma?) 2.3.1: The class of languages accepted by finite automata is
closed under union, concatenation, Kleene star, complementation, and intersection.

Rewritten:

If L1 and L2 are in the set of languages accepted by DFAs/NFAs, then so are

L1 ∪ L2 L1L2 L1* L1 and L1 ∩ L2

Analyzed in terms of quantification:

∀ L1, L2, if ∃ M1,M2 | L(M1) = L1 and L(M2) = L2
then ∃ M3 | L(M3) = L1 ∪ L2 (etc)



Main result:

Theorem 2.3.2: A language L is regular iff ∃ M ∈ NFA such that L(M) = L.

Corollary:

Set of Set of Set of
regular = NFA = DFA

languages languages languages



Theorem 2.3.2: A language L is regular iff ∃ M ∈ NFA such that L(M) = L.

Proof (outline). (⇒) Suppose t is a regular expression.

Base cases. Suppose t = ε

Suppose t = ∅

Suppose t = a ∈ Σ

Inductive cases. Suppose t = r |s We know by induction that there
exist M1 and M2 such that
L(M1) = r and L(M2) = s.



Theorem 2.3.2: A language L is regular iff ∃ M ∈ NFA such that L(M) = L.

Proof (outline) continued. (⇐) Suppose M ∈ NFA. [We need to construct
a regular expression that generates the language that M accepts.]

Label the states of M q1, q2, . . . qn arbitrarily except that s = q1.

Consider the set of state-transition paths from qi to qj that do not include any
state qx for x > k .

Let R(i , j , k) be the set of strings that drive the machine from qi to qj without
stopping at any state qx for x > k .

For any qi and qj , show that R(i , j , k) is regular by induction on k .

Hence R(1, j , |K |) is regular for any qj ∈ F . Therefore L(M) is regular. □



News of the day: Not all languages are regular.

Non-constructive proof: The set of languages is uncountable, but the set of regular
expressions is countable. Hence some languages can’t be specified by a regular
expression.

Theorem 2.4.1: Let L be a regular language. There is an integer n ≥ 1 such that any
string w ∈ L with |w | ≥ n can be written as w = xyz such that y ̸= ε, |xy | ≤ n, and
xy iz ∈ L for each i ≥ 0.



Theorem 2.4.1: Let L be a regular language. There is an integer n ≥ 1 such that any
string w ∈ L with |w | ≥ n can be written as w = xyz such that y ̸= ε, |xy | ≤ n, and
xy iz ∈ L for each i ≥ 0.

This is a pumping theorem:

Proof (sketch). Let M be a DFA that accepts L. Suppose w ∈ L and w is
at least as long as the number of states in M.

At least one state is repeated in the transition sequence, some qi = qj . Let
xyz = w where x is the prefix of w from s to qi , y is the substring of w from
qi to qj , and z the suffix of w from qj to f ∈ F .

When the machine gets back to qi = qj , it could accept another copy of y—or
it could have not had y in the input string at all.

Hence ∀ i , i ≥ 0, xy iz ∈ L. □






