I. Core / A. Correctness and efficiency of algorithms

» Review of algorithms, correctness, and efficiency (today and next week
Monday)

> Asyptotics (next week Friday and Mon, Sept 9)

Today:
» Review basics of correctness proofs and algorithmic analysis
P> Get used to the book's convention, notation, quirks, etc.

> Preview what's expected of you



INSERTION-SORT(A)

1 for j = 2to A.length
key = A[Jj]
// Tnsert A[j] into the sorted sequence A[l ../ — 1].
b1
while i > 0 and A[i] > key
Ali + 1] = Ali]
f=i~—1
Ali + 1] = key

00 N ON L W



def linear_search(A, v):
i=0

while i < len(A) and A[i] '= v :

i=1+1
if i == len(A)

return None
else

return i



def linear_search(A, v): > VYV kel0,i),Alk] # v.

i=0 » jis the number of iterations
wh11§ i f len(A) and A[i] '= v : completed.
i=1+1

if i == len(A)
return None
else
return i

Init. Initially, i = 0, so both parts of the invariant are trivially true.

Maint. Suppose that before the iteration, ¥ k € [0, ), A[k] # v, and i is the number
of iterations so far.

In order for the iteration to be executed, A[i] # v. The body of the loop inplies

ipOSt = ipre + 1. ThenV k € [1, ipOSt)aA[k] 75 V.

Moreover, ipost is now the number of iterations so far.

(This completes the proof of the lemma that the proposition above is a loop invariant.)



def linear_search(A, v): > V kel0,i),Alk] # v.

i - 0 . . » | is the number of iterations
whllg i< len(A) and A[i] !'= v : completed.
i=1i+1

if 1 == len(A)
return None
else
return i
Term. By the loop invariant, after n iterations i = n and so the guard fails after no
more than n iterations.
When the guard fails, either A[i] = v or i = n. In either case, the loop terminates after
at most n iterations.
In the first case, A[i] = v, and i is returned. Moreover, by the loop invariant i is the
first position in A that contains v.
In the second case i = n and None is returned. By the loop invariant we know that
V k € [0, n), A[k] # v and so v exists nowhere in A. Either way the algorithm is correct.



def linear_search(A, v):

found = False

i=0

while not found and i < len(A)
found = A[i] = v
i=1i+1

if found :
return i - 1

else
return None

Invariant:
> VvV kel0,i—1),Alk] # v.
» found iff A[i —1] =v

» | is the number of iterations completed






def selection_sort(A):
for i in range(len(A))

min_pos = 1

min = A[i]

for j in range(i + 1, len(A)):

if A[j] < min:

min = A[j]
min_pos = j

Almin_pos] = A[i]

Ali] = min



For next time

Read Section 2.3
Do Ex 2.3-(3, 6, 7)
See special instructions for 2.3-7



