
I. Core / A. Correctness and efficiency of algorithms

▶ Review of algorithms, correctness, and efficiency (today and next week
Monday)

▶ Asyptotics (next week Friday and Mon, Sept 9)

Today:

▶ Review basics of correctness proofs and algorithmic analysis

▶ Get used to the book’s convention, notation, quirks, etc.

▶ Preview what’s expected of you





def linear_search(A, v):

i = 0

while i < len(A) and A[i] != v :

i = i + 1

if i == len(A) :

return None

else

return i



def linear_search(A, v):

i = 0

while i < len(A) and A[i] != v :

i = i + 1

if i == len(A) :

return None

else

return i

▶ ∀ k ∈ [0, i),A[k] ̸= v .

▶ i is the number of iterations
completed.

Init. Initially, i = 0, so both parts of the invariant are trivially true.
Maint. Suppose that before the iteration, ∀ k ∈ [0, i),A[k] ̸= v , and i is the number
of iterations so far.
In order for the iteration to be executed, A[i ] ̸= v . The body of the loop inplies
ipost = ipre + 1. Then ∀ k ∈ [1, ipost),A[k] ̸= v .
Moreover, ipost is now the number of iterations so far.
(This completes the proof of the lemma that the proposition above is a loop invariant.)



def linear_search(A, v):

i = 0

while i < len(A) and A[i] != v :

i = i + 1

if i == len(A) :

return None

else

return i

▶ ∀ k ∈ [0, i),A[k] ̸= v .

▶ i is the number of iterations
completed.

Term. By the loop invariant, after n iterations i = n and so the guard fails after no
more than n iterations.
When the guard fails, either A[i ] = v or i = n. In either case, the loop terminates after
at most n iterations.
In the first case, A[i ] = v , and i is returned. Moreover, by the loop invariant i is the
first position in A that contains v .
In the second case i = n and None is returned. By the loop invariant we know that
∀ k ∈ [0, n),A[k] ̸= v and so v exists nowhere in A. Either way the algorithm is correct.



def linear_search(A, v):

found = False

i = 0

while not found and i < len(A) :

found = A[i] = v

i = i + 1

if found :

return i - 1

else :

return None

Invariant:

▶ ∀ k ∈ [0, i − 1),A[k] ̸= v .

▶ found iff A[i − 1] = v

▶ i is the number of iterations completed





def selection_sort(A):

for i in range(len(A)) :

min_pos = i

min = A[i]

for j in range(i + 1, len(A)):

if A[j] < min:

min = A[j]

min_pos = j

A[min_pos] = A[i]

A[i] = min



For next time

Read Section 2.3
Do Ex 2.3-(3, 6, 7)
See special instructions for 2.3-7


