
Schedule (recent and imminent)
Date Reading In class

Fri, Nov 22 6 (whole chapter) Sections 5.(4,6,7),
definitions from 6.(1 & 2)

Mon, Nov 25 Reread 6.1 6.1 Definition of class P etc
Reread 6.2 through pg 282 6.2 Reachability, HamCycle

Mon, Dec 2 Reread rest of 6.2 6.2 TSP, IndependentSet
Reread 6.3 Clique, Partition

6.3 Boolean satisfiability

Wed, Dec 4 Reread 6.4 6.4 The class NP
Read 7.2 7.1 Polynomial-time reductions

Boolean Satisfiability (SAT) and family

▶ A literal is an occurrence of a variable or its negation: x or ∼ x

▶ A clause is a disjunction of literals: x1 ∨ x2∨ ∼ x3
▶ A formula is a conjunction of clauses: (x1∨ ∼ x2 ∨ x3) ∧ (x2 ∨ x4∨ ∼ x5)

▶ A truth assignment is a mapping from variables to {⊤,⊥}
▶ A truth assignment satisfies a formula is ∀ clauses ∃ a true literal

The Satisfiability problem is, given a formula, does a satisfying truth assignment exist?

2-SAT: Given a formula in which each clause has no more than two literals . . .

3-SAT: Given a formula in which each clause has no more than three literals . . .

Claim: This algorithm produces a satisfying truth assignment iff one exists.

Proof. (⇒) [If the algorithm returns a truth assignment, that assignment
indeed satisfies the given formula.]

In the original/initial call to purge, any individual variable assignment that
results must be part of any satisfying truth assignment, since the formula
cannot be satisfied without the variable assignments done by purge.

Invariant for the main loop: The (partial) assignment to the variables is part
of a satisfying (complete) truth assignment, iff one exists.

Initialization: Implied by what is said above.

Maintenance: Suppose the partial assignment at the beginning of an iteration
is part of a complete satisfying truth assignment. This iteration assigns to one
variable. If that assignment were not part of a CSTA that also includes the
current partial assignment, it would be rejected by the call to purge. Hence
the updated partial assignment is also part of a CSTA.

Termination. There is at most one iteration for each variable. Since there are
a finite number of variables, the loop terminates. When the loop terminates,
all variables are assigned, and, by the loop invariant, that assignment is “part
of” a CSTA. There fore the assignment is a CSTA.

(⇐) [If a truth assignment exists, the algorithm returns one.]

Suppose a truth assignment exists, and suppose the algorithm doesn’t find
one. From that we can derive a contradiction. □

Why don’t the polynomial-time algorithms for 2-SAT work for 3-SAT?

The purge routine is based on the premise that if a guess doesn’t fail, then it is safe.

(∼ x1 ∨ x2∨ ∼ x3) ∧ (∼ x1∨ ∼ x2∨ ∼ x3) ∧ (∼ x1 ∨ x2 ∨ x3) ∧ (∼ x1∨ ∼ x2 ∨ x3)

What if we guess x1 := ⊤?

§6.4. The class NP defined

Our aspiration: We want to identify problems that are not in class P.

We suspect Ham-Cycle, TSP, Indep-Set, Partition, SAT, and 3-SAT are not in class P.
They all happen to be in class NP.

A language L is in class NP if there exists a nondeterministic Turing machine M such
that

▶ All computations are bounded by a polynomial in the size of the input (and hence
halt)

▶ There are no false positives:
If w /∈ L then all computations of M on w halt n

▶ There may be some false negatives, but there must be at least one true positive
If w ∈ L, then ∃ a computation of M on w that halts y

LP pg 293

Notice how cleverly the nodeterministic “algorithms” of [Examples 6.4.(1&2)]
exploit the fundamental asymmetry in the definition of nondeterministic time-
bounded computation. They try out all possible solutions to the problem in
hand in independent computations, and accept as soon as they discover one
that works—oblivious of the others that do not. LP pg 295

▶ P ⊆ NP, just as R ⊆ RE .

▶ P ⊆ EXP, but P ≠ EXP.
(since E ∈ EXP but E /∈ P, Theorem 6.1.2)

▶ NP ⊆ EXP. (Theorem 6.4.1)

▶ These imply that P ⊆ NP ⊆ EXP,
but also that P = NP and NP = EXP cannot both be true.

▶ We don’t know whether P ≠ NP or NP ̸= EXP (possibly both are true).

Alternative definition of NP:

L ∈ NP if there exists a Turing machine M such that for all w ∈ L there
exists a string y such that |y | is polynomial in |w | and M computes whether
w ∈ L in polynomial time when given w ; y as input.

y is a succinct certificate.

CLRS’s definition of class NP:

The complexity class NP is the class of languages that can be verified by a
polynomial-time algorithm. More precisely, a language L belongs to NP if and
only if there exist a two-input polynomial-time algorithm A and a constant c
such that

L = {x ∈ {0, 1}* | ∃ a certificate y with |y | = O(|x |c)
such that A(x , y) = 1}

We say that algorithm A verifies language L in polynomial time. CLRS pg 1064

Garey and Johnson, Computers and Intractability, Freeman, 1979; pg 2

Garey and Johnson, Computers and Intractability, Freeman, 1979; pg 2

Garey and Johnson, Computers and Intractability, Freeman, 1979; pg 3

Revisiting the nature of a reduction:

▶ A reduction from A to B uses a solution to B to build a solution to A.
“If we can solve B [within constraints], then we can solve A [within analogous
constraints].”

▶ To show a polynomial reduction from L1 to L2 requires us to
▶ Describe a function τ from L1-candidates to L2-candidates
▶ Show that τ is computed in polynomial time.
▶ Show that ∀ x ∈ L1-candidates, x ∈ L1 iff τ(x) ∈ L2.

So the reduction turns an instance of “problem” L1 to an instance of “problem”
L2.

▶ A reduction from A to B is evidence that B is at least as hard as A.

