
1. Let P[i ] be the least total penalty for traveling from the hotel (or home) at position
i to the destination at position n. P[0] is the entire problem. Then

P[i ] =


0 if i = n

mini<k≤n((200− (ak − ai ))
2 + P[k]) otherwise

2. a.

∀ L ∈ N
∃M ∈ DFA
| (∀ s ∈ L
w ∈ L(M)

and (∀w ∈ L(M)
w ∈ L

b.

∀ L ∈ R
∃ n ∈W
∀ w ∈ L,
if |w | ≥ n,
∃ x , y , z
| w = xyz
and ∀i ∈W
xy iz ∈ L



Date Reading Daily work problems

Fri, Nov 1 3.1 CFGs
3.2 Parse trees
3.3 PDAs

2.2.6. Make an NFA, convert to
DFA

Mon, Nov 11 3.4 PDAs and CFGs
3.5 Languages not CF
4.1 Turing machines defined

3.3.2 Construct PDAs

Wed, Nov 13 4.2 Computing with TMs
4.3 Extensions to TMs
4.4 Random access TMs

4.1.1 Trace a TM computation

Fri, Nov 15 4.5 Nondeterministic TMs 4.5.1 Design an Nondet TM



A context-free grammar contains

▶ An alphabet Σ, the set of terminal symbols

▶ A set of non-terminal symbols

▶ Rules for expanding non-terminals

▶ A start symbol

(The book unites the terminal and non-terminal symbols into set V , which it calls the
alphabet.)



All regular languages are context-free

▶ PDAs (§3.3) generalize NFAs

▶ Context-free languages are closed under union, concatenation, and Kleene star

▶ We can construct a CFG from a DFA

Not all context-free languages are regular

CFGs represent a strictly more powerful model than DFAs/NFAs.



Perspective: We are taking DFAs, which have no memory, and equipping them with
minimal memory

Definition 3.3.1: A pushdown automaton is a sextuple M = (K ,Σ, Γ,∆, s,F ),
where

▶ K is a finite set of states

▶ Σ is an alphabet of input symbols

▶ Γ is a set of stack symbols

▶ s ∈ K is the initial state

▶ F ⊆ K is the set of final states

▶ ∆ is the transition relation, a subset of

(K × (Σ ∪ {ε})× Γ*)× (K × Γ*)

LP, pg 131



Ex 3.3.2.a. Construct a PDA to accept the language of strings with appropriately
nested parenthesis and square brackets.

K = {s, q}, Γ = {(, [, b} and F = {s}.

(( s, (, ε ), ( q, b( ))
(( s, [, ε ), ( q, b[ ))
(( q, (, ε ), ( q, ( ))
(( q, [, ε ), ( q, [ ))
(( q, ], b[ ), ( s, ε ))
(( q, ), b( ), ( s, ε ))
(( q, ], [ ), ( q, ε ))
(( q, ), ( ), ( q, ε ))



Ex 3.3.2.b Construct a PDA for the language of strings consisting in a certain number
of occurrences of a followed by between as many and twice as many occurrences of b.

{ambn | m ≤ n ≤ 2m}

K = {s, q, r , f }

(( s, a, ε ), ( q, xaa ))
(( q, a, ε ), ( q, aa ))
(( q, b, aa ), ( r , ε ))
(( q, b, a ), ( r , ε ))
(( r , b, aa ), ( r , ε ))
(( r , b, a ), ( r , ε ))
(( r , b, xa ), ( f , ε ))
(( r , b, xaa ), ( f , ε ))



Main points of §3.(4 & 5)

Theorem 3.4.1: The class of languages accepted by nondeterministic pushdown
automata equals the class of context-free languages.
(Deterministic pushdown automata are less powerful.)

Lemma 3.4.1: CFG ⊆ PDA. Proof. Construct a a PDA from a CFG.

Lemma 3.4.2: PDA ⊆ CFG . Proof. First simplify PDAs, then show the simplification
doesn’t change anything, then construct a CFG from a simplified PDA.

Some languages aren’t context-free.

Theorem 3.5.1: CFGs are closed under union, concatenation, and Kleene star. . .

. . . but not under intersection or complementation.
LP, pg 136–139, 143



The limitations of CFGs/PDAs

Lemma 3.5.1: The yield of any parse tree of G of height h has length at most ϕ(G )h.

Theorem 3.5.3: Let G be a context-free grammar. Then any string w ∈ L(G ) with
length greater than ϕ(G )|V−Σ| can be rewritten as w = uvxyz in such a way that
either v or y is nonempty and uvnxynz ∈ L(G ) for every n ≥ 0.

Define fanout of G , ϕ(G ).

Proof outline. Imagine a parse tree. Each node has at most ϕ(G ) children,
so for height h, the length of the yielded string is at most ϕ(G )h.
Context-free languages have a form of regularity:

u vn x yn z

So, contrapositively, if a language has no such regularity, it is not context free.
□

LP, pg 145



Turing machines

Criteria:

▶ They should be automata

▶ They should be as simple as possible to describe

▶ They should be as general as possible

The tape has a left end, but it extends indefinitely to the right.

LP pg 180



Formal definition:
A Turing machine is a quintuple (K ,Σ, δ, s,H) where

▶ K is a finite set of states

▶ Σ is an alphabet, including ⊔ (blank) and ▷ (left-end-of-tape), but not ← or →.

▶ s ∈ K is the initial state

▶ H ⊆ K is the set of halting states

▶ δ is the transition function from (K − H)× Σ to K × (Σ ∪ {←,→})
▶ For all q ∈ K − H, if δ(q, ▷) = (p, b), then b =→
▶ For all q ∈ K − H and a ∈ Σ, if δ(q, a) = (p, b), then b ̸= ▷



Definition 4.1.2: Configuration:

K × ▷Σ*× (Σ*(Σ− {⊔}) ∪ {ε})

Definition 4.1.3: ⊢M means transition in one step to a new state and either write, go
left, or go right.

Definition 4.1.4:

▶ One configuration yields another: C0 ⊢*M C2

▶ A computation is a sequence of configurations

▶ A computation has length n or n steps, C0 ⊢nM Cn.



Ex 4.1.1: K = {q0, q1, h},Σ = {a,⊔, ▷}, s = q0},H = {h}

q σ δ(q, σ)

q0 a (q1,⊔)
q0 ⊔ (h,⊔)
q0 ▷ (q0,→)
q1 a (q0, a)
q1 ⊔ (q0,→)
q1 ▷ (q1,→)

LP pg 182



Ex 4.1.1: K = {q0, h},Σ = {a,⊔, ▷}, s = q0,H = {h}}

q σ δ(q, σ)

q0 a (q0,←)
q0 ⊔ (h,⊔)
q0 ▷ (q0,→)

LP pg 183



⊔R2
⊔aL

2
⊔a> L⊔

R⊔

R
a ̸= ⊔

⊔

LP pg 190. Figure 4-8, redrawn



⊔R⊔aL⊔

R⊔

a ̸= ⊔

⊔

> L

LP pg 190. Figure 4-9, redrawn and corrected


