
Review for Test 2

Dynamic programming. There will be a question where you are given a problem that can be
solved using dynamic programming. You will be asked to give a recursive
characterization of the problem, a thorough and clear explanation of what the
tables mean, and a verbal description of a strategy for populating the tables.

Greedy algorithms. There will be a problem that can be solved greedily. You will be asked to
write an algorithm to solve this problem and prove that the problem has the
greedy choice.

Polynomials and the FFT. There will be a problem that involves representing polynomials,
operating on them, and/or transforming polynomials from one representation to
another.

Finite automata and push-down atomata. There will be a series of factual questions about
DFAs, NFAs, regular expressions, context-free languages, and PDAs. Know the
definitions of the various machines and the theorems from the sections we
covered in class (you will not need to reproduce the definitions and theorems,
but the questions will require you to understand their significance). In
particular, understand machine equivalence and the equivalence between classes
of machines.



15-4. Let Li be the length of the ith word and, as the problem states, M be the
maximum number of characters per line. Let C [i ] be the total penalty (cost) of the
best way to print the words from i to the end, with i beginning a new line. Then the
recursive characterization is

C [i ] =


0 if n − i − 1 +

∑n−1
k=i Lk ≤ M

minj | i<j≤x C [j ] +
(
j − i − 1 +

∑j−1
k=i Lk

)3

. . . where x is the greatest index such that x − i − 1 +
∑j−1

k=i Lk ≤ M.



16-4. The greedy choice is to schedule the task with shortest completion time first.

Proof. Suppose S is a set of tasks and A be an ordering of the tasks in S
that minimizes their total completion time (which, it should be noted, also
minimizes the average completion time). Let a1, a2, . . . refer to the tasks in
S in the order specified by A, that is A indicates that a1 should be scheduled
first, a2 second, etc. Let the indices on processing time pi correspond to this
ordering, that is p1 is the processing time of the tasked scheduled first by A.

Let ak be the task with minimal processing time, that is for all i ∈ [1, n], pk ≤
pi . Now consider an ordering of the tasks like A but with task ak moved to
the front.



Now consider the difference between the total completion time of A and the
total completion time of the new ordering: the completion times of tasks ai
where i > k are unchanged; the completion time of task ak is decreased by∑k−1

i=1 pi ; the completion time of each task ai where i < k is increased by pk .
Thus the difference is

(k − 1)pk −
∑k−1

i=1 pi ≥ (k − 1)pk − sumk−1
i=1 pk because pk ≤ pi

= (k − 1)pk − (k − 1)pk
= 0

Since the difference is greater than or equal to 0, the new ordering has total
processing time less than or equal to the total processing time of the supposed
minimal ordering. Therefore it is safe to put the task with least processing
time first. 2



Code (yes, this is it):

public static void scheduleBatch(BatchProcessor.Task[] tasks) {

Arrays.sort(tasks, new Comparator<BatchProcessor.Task>() {

public int compare(BatchProcessor.Task o1, BatchProcessor.Task o2) {

return o1.processingTime - o2.processingTime;

}

});

}

For part b. the greedy choice is to schedule, at any point, the with least remaining
non-zero completion time, of those task that have been released.



30-1.a

(a0 + a1x) · (b0 + b1x) = a1b1︸︷︷︸
c2=α

x2 + (a0b1 + a1b0)︸ ︷︷ ︸
c1=γ−α−β

x + a0b0︸︷︷︸
c0=β

(a0 + a1) · (b0 + b1)︸ ︷︷ ︸
hint in book,γ

= a0b0 + a0b1 + a1b0 + a1b1

(a0b1 + a1b0)︸ ︷︷ ︸
c1=γ−α−β

= (a0 + a1) · (b0 + b1)− a0b0︸︷︷︸
c0=β

− a1b1︸︷︷︸
c2=α



30-1.b.i

n−1∑
i=0

aix
i ·

n−1∑
i=0

bix
i =

n
2
−1∑

i=0

aix
i ·

n
2
−1∑

i=0

bix
i

︸ ︷︷ ︸
α

+xn

n
2
−1∑

i=0

ai+ n
2
x i ·

n
2
−1∑

i=0

bi+ n
2
x i︸ ︷︷ ︸

β

+x
n
2

 n
2
−1∑

i=0

(ai + ai+ n
2
)x i ·

n
2
−1∑

i=0

(bi + bi+ n
2
)x i − α− β


The recurrence is

T (n) = 3T
(n
2

)
+ f (n)

where f (n) is dominated by the cost of additions and subtraction in the list
comprehensions, which are linear. Applying the Master method, a = 3, b = 2, and
f (n) = Θ(n). Note that lg 3 ≈ 1.585. Thus f (n) = O(nlg 3−ϵ) for ϵ = 1

2 , for example.
Therefore, by the Master method, T (n) = Θ(nlg 3).



30-1.b.ii

n−1∑
i=0

aix
i ·

n−1∑
i=0

bix
i =

n
2
−1∑

i=0

a2ix
2i ·

n
2
−1∑

i=0

b2ix
2i

︸ ︷︷ ︸
α

+x2

n
2
−1∑

i=0

a2i+1x
2i ·

n
2
−1∑

i=0

b2i+1x
2i

︸ ︷︷ ︸
β

+x

 n
2
−1∑

i=0

(ai + ai+1)x
i ·

n
2
−1∑

i=0

(bi + bi+1)x
i − α− β


The analysis is the same.


