

Schedule (recent and immanent)
Date Reading In class

Wed, Nov 13 4.2. Computing with TMs Through definition of semidecide
4.3 Extensions to TMs
4.4 RAM TMs

Fri, Nov 15 4.5 Nondet. TMs Through 4.5

Mon, Nov 18 5.1 C-T Thesis Through 5.3
5.2 Universal TMs
5.3 The halting problem
5.4 Undecidable problems

Wed, Nov 20 5.6 Tiling 5.(4,6,7) 5.4
5.7 Properties of rec langs

Fri, Nov 22 6 (whole chapter) 5.(4,6,7),
definitions from 6.(1 & 2)

§5.4. More undecidable problems

We have a beachhead in RE − R. What else can we find?

To show that L is undecidable:

▶ Suppose L is decidable

▶ Use the machine that decides L to build a machine that decides the halting
problem

▶ Conclude (by contradiction) that L is undecidable

If L ∈ R, then H ∈ R.
H /∈ R
Therefore L /∈ R

More detailed format for proving that some language L is undecidable:

▶ Choose a known undecidable problem/language L1.

▶ Suppose a machine M decides L.

▶ Define τ , a function from L1 to L.

▶ Show that τ is recursive (decidable/computable).

▶ Show that w ∈ L1 iff τ(w) ∈ L. That is, show that the machine made by
composing τ and M decides problem L1, which is absurd.

▶ Conclude (by contradiction) that M does not exist, that is, that L is undecidable.

5.4.2.a. NO.

Short answer: Suppose such a Turing machine existed. Then suppose we have a
machine M and input w . Make a machine that modifies the input M so that all halt
states in M transition to a new state q. Then use the machine suggested here to
determine if this modified M reaches state q. This would solve the halting problem.

Long answer:
Proof. We will prove that this problem is undecidable by reducing the halting
problem to it.
Suppose there exists a machine M1 that decides the language of Turing ma-
chine, state, string triples (M, q, w) such that M reaches state q when given
input w .

Long answer/proof for 5.4.2.a, continued

Let M2 be the Turing machine that operates as follows: When given the
description of a machine M and input w , M2 constructs the description of a
machine M ′ such that M ′ is like M except that it has one more state q, and
all the transitions in M that would move to a halting state are changed so that
they now transition to q. Then M2 acts like M1 on the description of M ′, q,
and w .
Note that by how we defined M2, it must be that M2 accepts M,w if and only
if M1 accepts M ′, q,w .
Further, M2 decides the halting problem: Suppose a machine M halts on input
w . Then the machine M ′ that M2 constructs will reach state q on input w ,
and so M1 and therefore M2 will accept it. Next suppose M does not halt
on input w . Then the machine M ′ will never reach state q, and so M1 and
therefore M2 will reject it.
Since it is impossible for a machine to decide the halting problem, M2 cannot
exist, and therefore M1 cannot exist. Thus this problem is undecidable. □

5.4.2.b. NO.

Short answer: If we had such a machine we could use it to decide the problem in part
a by setting p to the start state.

Long answer:
Proof. We will prove that this problem is undecidable by reducing the problem
in part a to it.
Suppose there exists a machine M1 that decides the language of Turing ma-
chine, state, state (M, p, q) triples such that there is a configuration with with
state p that yields a configuration with state q.

Long answer/proof for 5.4.2.b, continued

Let M2 be the Turing machine that operates as follows: When given the
description of a machine M, a state q, and a string w , M2 constructs the
description of a machine M ′ such that M ′ is like M except that it has a new
start state s. (Let s0 be the start state of M.) When M ′ is in state s, it erases
whatever is on its tape and writes w in its place. Then it moves its head to
the beginning and transitions to state s0; from then on, M ′ operates like M.
After constructing M ′, M2 also adds the description of s and q on the tape
and then acts like M1 does on its input; in other words, it gives (M ′, s, q) as
input to M1.
Note that by how we defined M2, it must be that M2 accepts (M, q) if and
only if M1 accepts (M ′, s, q).
Further, M2 solves the problem described in part a: Suppose a machine M
reaches state q starting with string w . Then the machine M ′ that M2 con-
structs will reach q from state s. Next suppose a machine M never reaches
state q starting with string w . Then the machine M ′ that M2 constructs will
never reach q from state s.
Since it is impossible for a machine to decide the problem in part a, M2 cannot
exist, and therefore M1 cannot exist. Thus this problem is undecidable. □

Definition 6.1.1: A Turing machine M is polynomially bounded if

∃ p(n), a polynomial function such that
∀ x ∈ Σ*

∀ C ∈ (set of configurations), either
C is unreachable from (s, ▷⊔w), or
(s, ▷⊔w) ⊢k

M C , where k ≤ p(|x |)

A language is polynomially decidable if

∃ M, a Turing machine that decides the language, such that
∃ p(n), a polynomial function such that

∀ x ∈ Σ*
∀ C ∈ (set of configurations), either

C is unreachable from (s, ▷⊔w), or
(s, ▷⊔w) ⊢k

M C , where k ≤ p(|x |)

LP pg 276

.

§6.2. The class of polynomially decidable languages is denoted P. Why is polynomial
time used as a measure of tractability/feasibility?

Scott Adams, 1994

