
Turing machines

Criteria:

I They should be automata

I They should be as simple as possible to describe

I They should be as general as possible

The tape has a left end, but it extends indefinitely to the right.
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Formal definition:
A Turing machine is a quintuple (K ,Σ, δ, s,H) where

I K is a finite set of states

I Σ is an alphabet, including t (blank) and . (left-end-of-tape), but not ← or →.

I s ∈ K is the initial state

I H ⊆ K is the set of halting states

I δ is the transition function from (K − H)× Σ to K × (Σ ∪ {←,→})
I For all q ∈ K − H, if δ(q, .) = (p, b), then b =→
I For all q ∈ K − H and a ∈ Σ, if δ(q, a) = (p, b), then b 6= .



Ex 4.1.1: K = {q0, q1, h},Σ = {a,t, .}, s = q0},H = {h}

q σ δ(q, σ)

q0 a (q1,t)
q0 t (h,t)
q0 . (q0,→)
q1 a (q0, a)
q1 t (q0,→)
q1 . (q1,→)
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Ex 4.1.1: K = {q0, h},Σ = {a,t, .}, s = q0,H = {h}}

q σ δ(q, σ)

q0 a (q0,←)
q0 t (h,t)
q0 . (q0,→)
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Prob 4.1.1: K = {q0, q1, h},Σ = {a, b,t, .}, s = q0},H = {h}

q σ δ(q, σ)

q0 a (q1, b)
q0 b (q1, a)
q0 t (h,t)
q0 . (q0,→)
q1 a (q0,→)
q1 b (q0,→)
q1 t (q0,→)
q1 . (q1,→)
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Definition 4.1.2: Configuration:

K × .Σ*× (Σ*(Σ− {t}) ∪ {ε})

Definition 4.1.3: `M means transition in one step to a new state and either write, go
left, or go right.

Definition 4.1.4:

I One configuration yields another: C0 `*M C2

I A computation is a sequence of configurations

I A computation has length n or n steps, C0 `nM Cn.
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Definition as language acceptor:
A Turing machine is a quintuple (K ,Σ, δ, s,H)

I H = {y , n}
I M accepts w if (s, .tw) `*M (y , x)

I M rejects w if (s, .tw) `*M (n, x)

I M decides language L ⊆ Σ*
0 if ∀ w ∈ Σ*

0, if w ∈ L, then M accepts w ; and if
w /∈ L, then M rejects w .

I A language L is recursive if there exists a Turing machine that decides L.

The term “recursive,” as a synonym for “decidable,” goes back to mathematics as it existed
prior to computers. Then, formalisms for computation based on recursion (but not iteration
or loops) were commonly used as a notion of computation. These notations. . . had some of
the flavor of computation in functional programming languages such as LISP or ML. In that
sense, to say a problem was “recursive” had the positive sense of “it is sufficiently simple
that I can write a recursive function to solve it, and the function always finishes.” That is
exactly the meaning carried by the term today, in connection with Turing machines.
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Definition 4.2.4: Let M = (K ,Σ, δ, s,H) be a turing machine, Σ0 ⊆ Σ−{t, .} be an
alphabet and L ⊆ Σ*

0 be a language.

I M semidecides L if

∀ w ∈ Σ*
0,w ∈ L iff M halts on w

I L is recursively enumerable iff there exists a Turing machine that semidecides L.




