
Schedule (recent and immanent)
Date Reading In class

Wed, Nov 13 4.2. Computing with TMs Through definition of semidecide
4.3 Extensions to TMs
4.4 RAM TMs

Fri, Nov 15 4.5 Nondet. TMs Through 4.5

Mon, Nov 18 5.1 C-T Thesis Through 5.3
5.2 Universal TMs
5.3 The halting problem
5.4 Undecidable problems

Wed, Nov 20 5.6 Tiling 5.(4,6,7)
5.7 Properties of rec langs

Fri, Nov 22 6 (whole chapter) Loose ends of Ch 5
Begin Ch 6



Proof of Theorem 4.5.1 [LP pg 224.]

Main idea:
Simulate all computations until you get a halt (if ever).

At a given configuration, say (q, uav). The next step considers only state q and
symbol a. The maximum number of next steps is

r = |K | · (|Σ|+ 2)

Let Md be the “deterministic version” of M.

Tape 1: ▷ · · · a b c c a b b b · · ·
↑

Tape 2: ▷ · · · 7 1 13 2 4 · · ·
↑



Proof of Theorem 4.5.1, continued.

Define M ′ with three tapes: One for the original input, one for the tape of the current
simulation of M, and one for the current hint tape for Md . Algorithm for M ′:

copy input onto the simulation tape
put 1 onto the hint tape

L: Operate like Md

if you ever halt, then great!
if you run out of hints,

copy original input back to the simulation tape
put the lexicographically next hint on the hint tape
goto L



https://dilbert.com/search_results?terms=Illogical+Scientist

Undecidability has been so much a part of the culture of computer science
since its beginnings, that it is easy to forget what a curious fact it is. Strictly
speaking, once we accept the identification of problems with languages and
algorithms as Turing machines, there are trivial reasons why there must be
undecidable problems: There are more languages (uncountably many) than
ways of deciding them (Turing machines). Still, that such problems exist so
close to our computational ambitions was a complete surprise when it was first
observed in the 1930’s. Undecidability is in some sense the most lethal form
of complexity. C Papadimitriou, Computational Complexity, pg 59

https://dilbert.com/search_results?terms=Illogical+Scientist


§5.2 The Universal Turing Machine

Design universal Turing machine U and specify a language of descriptions of Turing
machines such that U(“M” “w”) = “M(w)”

▶ Use strings to represent tape symbols. a means, “this is a tape symbol.”

▶ Use strings to represent states. q means, “this is a state.”
▶ Have three tapes:

1. To simulate M’s tape
2. To store the description of M
3. To simulate M’s state

▶ Scan the description of the transition function until an appropriate transition is
found.



§5.3 The Halting Problem

H ∈ RE, but H /∈ R; hence although R ⊆ RE, RE ̸= R.

▶ Suppose we have a program halts

▶ Build the program diagonal:

diagonal(X ) :
a: if halts(X ,X ) then goto a else halt

▶ Does diagonal(diagonal) halt or diverge?

diagonal(diagonal) halts −→ halts(diagonal, diagonal) −→ diagonal(diagonal) diverges

diagonal(diagonal) diverges −→ ∼ halts(diagonal, diagonal) −→ diagonal(diagonal) halts

This kind of argument should be familiar not only from your past exposure to
computer science, but also from general twentieth century culture. LP, pg 251



Thm 7.23. (0, 1) is uncountable.

Proof. Suppose (0, 1) is countable. Then there exists a one-to-one correspon-
dence f : N → (0, 1). We will use f to give names to the all the digits of
all the numbers in (0, 1), considering each number in its decimal expansion,
where each ai ,j stands for a digit.:

f (1) = 0.a1,1a1,2a1,3 . . . a1,j . . .
f (2) = 0.a2,1a2,2a2,3 . . . a2,j . . .

...
f (x) = 0.ax ,1ax ,2ax ,3 . . . ax ,j . . .

...

Now construct a number d = 0.d1d2d3 . . . di . . . as follows

di =

{
1 if ai ,i ̸= 1
2 if ai ,i = 1



Since d ∈ (0, 1) and f is onto, there exists an x ∈ N such that f (x) = d .
Moreover,

f (x) = 0.ax ,1ax ,2ax ,3 . . . ax ,x . . .

so

d = 0.ax ,1ax ,2ax ,3 . . . ax ,x . . .

by substitution. In other words, di = ax ,i , and specifically dx = ax ,x . However,
by the way that we have defined d , we know that dx ̸= ax ,x , a contradiction.
Therefore (0, 1) is not countable. □



Gödel’s Theorem appears as Proposition VI in his 1931 paper “On Formally
Undecidable Propositions in Principia Mathematica and Related Systems I.”
It states [paraphrased]:

All consistent axiomatic formulations of number theory include undecidable
propositions.

Gödel had the insight that a statement of number theory could be about a
statement of number theory, if only numbers could somehow stand for state-
ments. The grand conclusion: That the system of [Russel and Whitehead’s]
Principia Mathematica is “incomplete”—there are true statements of number
theory which its methods of proof are too weak to demonstrate.

D Hofstadter, Gödel, Escher, Bach, pg 17–18, abridged



But if Principia Mathematica was the first victim of this stroke, it was certainly not
the last. The phrase “and Related Systems” in the title of Gödel’s article is a telling
one; for if Gödel’s result had merely pointed out a defect in the work of Russell and
Whitehead, then others could have been inspired to improve upon P.M. and to outwit
Gödel’s Theorem. But this was not possible: Gödel’s proof pertained to any axiomatic
system which purported to achieve the aims which Whitehead and Russell had set for
themselves. In short, Gödel showed that provability is a weaker notion than truth, no
matter what axiomatic system is involved.

Therefore Gödel’s Theorem had an electrifying affect upon logicians, mathematicians,
and philosophers interested in the foundations of mathematics, for it showed that
no fixed system, no matter how complicated, could represent the complexity of the
whole numbers. Modern readers may not be as nonplussed by this as readers of 1931
were, since in the interim our culture has absorbed Gödel’s Theorem, along with the
conceptual revolutions of relativity and quantum mechanics, and their philosophically
disorienting messages have reached the public, even if cushioned by several layers of
translation (and obfuscation). There is a general mood of expectation, these days, of
“limitive” results—but back in 1931, this came as a bolt from the blue.

D Hofstadter, Gödel, Escher, Bach, pg 19, abridged



H is complete for the class RE .

If H ∈ R, then R = RE. (But it’s not.)

Any other RE language can be reduced to H.

Theorem 5.3.1: The language H is not recursive; therefore, the class of recursive
languages is a strict subset of the class of recursively enumerable languages.

Theorem 5.3.2: The class of recursively enumerable languages is not closed under
complement.



§5.4. More undecidable problems

We have a beachhead in RE − R. What else can we find?

To show that L is undecidable:

▶ Suppose L is decidable

▶ Use the machine that decides L to build a machine that decides the halting
problem

▶ Conclude (by contradiction) that L is undecidable

If L ∈ R, then H ∈ R.
H /∈ R
Therefore L /∈ R



Reread 5.4. Read 5.(6 & 7). (We’re not covering 5.5.)
Make your best attempt on Ex 5.4.2.(a & b).
(The daily work for Nov 22 includes giving Ex 5.4.2.(a & b) a second attempt.)


