Errata in *Discrete Mathematics and Functional Programming*

Pg 48: Exercise 1.11.5 mentions replacing Chips with Fries. However, the datatype given in Section 1.10 (available from https://cs.wheaton.edu/~tvandrun/dmfp/sec1-10-own-types.sml) doesn't have Fries. Either add Fries to the datatype or make this function something like replaceCarrotSticks. Thanks to Kyler Dunn.

Pg 48: $4! = 4 \cdot 3 \cdot 2 \cdot 1$ should be $4! = 4 \cdot 3 \cdot 2 \cdot 1$. Thanks to Cooper Lazar.

Pg 50: I don’t believe there is a way to solve Exercise 1.12.1 using what the student knows at that point and without using ML’s size. The best solution would be to turn the string into a list using explode and then use the solution to Exercise 2.2.4. The following would work:

```ml
fun charCount("") = 0
  | charCount(s) = 1 + charCount(substring(s, 1, size(s) - 1));
```

...but that’s silly, since if we are allowed to use size anyway, there is no reason to write charCount.

Pg 100: Exercises 3.2.3 reads $\neg (p \land q) \lor (p \land \neg p) \equiv p \lor \neg q$. Note the p on the right is not negated. This affects the original statement of the problem (“Suppose we were to show that $\neg (p \land q) \lor (p \land \neg p) \equiv p \lor \neg q$”) and the first three right hand sides of the “Don’t do this” column. Spotted by Caleb Josue Ruiz Torres. (Moreover, the $=$ in the ”Do this” column should all be \equiv. Spotted by David Topham.)

Do this: $\neg (p \land q) \lor (p \land \neg p)$
$\equiv (p \land \neg q)$
$\equiv (p \land \neg q)$
$\equiv p \lor \neg q$

Don’t do this: $(p \land q) \lor (p \land \neg p)$
$\equiv p \lor \neg q$
$\equiv p \lor \neg q$
$\equiv p \lor \neg q$

Pg 121: “Clearly $u \land p \rightarrow q \lor r...$” should be “Clearly $u \land p \rightarrow q \land r...$”

Pg 135: “...has additive” should be “has additive inverse.”

Pg 136 The premise “If Socrates is a human, then he is mortal” doesn’t match the form $\forall x \in A, P(x)$. Instead it should read “All humans are mortal.” (But then it doesn’t match the argument from Section 3.11... Oh well.)

Pg 138: In the first example, step vii should cite iii and vi, not iii and iv. In the second example, step xi should cite iii (and x and d), not iv.
Pg 139: Ex 3.14.7 premise a should have “for all y in B, P(x, y)” parenthesized, that is:

\[(a) \forall x \in A, (\forall y \in B, P(x, y)) \rightarrow Q(x)\]

Pg 167: “D and E together make a partition of the powerset of A, \(\mathcal{P}(A)\).” should be “\(\mathcal{P}(D)\) and E together make a partition of the powerset of A, \(\mathcal{P}(A)\).”

Pg 177: In Exercise 4.10.6, the “termination” condition in Lemma 4.22 is incorrect. It should read:

Lemma 4.22 For all \(a, b \in \mathbb{N}\), there exists unique \(n, r \in \mathbb{W}\) such that \(a = b^n + r\) and \(0 \leq r < (b - 1) \cdot b^n\).

Pg 179: Statement lists are introduced in section 1.3, not section 2.5.

Pg 205: Exercise 5.3.4 should say “requires that \(\mathcal{I}_R(a) = \emptyset\)”, that is, element \(a\) rather than set \(A\). Thanks to Janet Davis.

Pg 208. The intention for Ex 5.4.1 was reflexivity fails for zero. However, the definition of reflexivity does allow \(0|0\) even though division by zero is undefined, Thanks to Janet Davis.

Pg 222: Ex 5.7.4 should read \((S \circ R) \circ Q = S \circ (R \circ Q)\).

Pg 260: In Ex 6.2.14, see Section 1.7 (not 2.5) to review the string type.

Pg 335: Ex 7.3.9 should read, “For example, filter(fn(x) => x mod 2 = 0 . . .”

Pg 359: In Ex 3.9.3, the fifth bullet (which is the first bullet of the second column of exercises, top right corner) should read

- Either \(f(a) \in F(A - \{a\})\) or \(f(a) \notin F(A - \{a\})\).

Pg 450: The part of the figure in the top right corner should read “Then add edge (1, 4) . . .”, not “Then add edge (3, 4)”.

Pg 513: The first bullet under the chapter goals should read “terms about lattices,” not “terms about graphs.”

Pg 653: The first paragraph under A.1 says that the general forms and set forms were introduced in Chapter 1. They were introduced rather in Chapter 4.

Pg 658: Under “Proving transitivity,” the second step should be “Show that \(a\) is related to \(c\). Hence \((a, c) \in R\) by . . .”