Theorem 5.1 (Logical equivalences.) Given logical variables p, q, and r, the following equivalences hold.

Commutative laws:	$p \wedge q$	\equiv	$q \wedge p$	$p \vee q$	\equiv	$q \lor p$
Associative laws:	$(p \wedge q) \wedge r$	≡	$p \wedge (q \wedge r)$	$(p \lor q) \lor r$	≡	$p \lor (q \lor r)$
Distributive laws:	$p \wedge (q \lor r)$	≡	$(p \wedge q) \lor (p \wedge r)$	$p \lor (q \land r)$	≡	$(p \lor q) \land (p \lor r)$
Absorption laws:	$p \wedge (p \lor q)$	≡	p	$p \lor (p \land q)$	≡	p
Idempotent laws:	$p \wedge p$	≡	p	$p \lor p$	≡	p
Double negative law:	$\sim \sim p$	≡	p			
DeMorgan's laws:	$\sim (p \wedge q)$	≡	$\sim p \vee \sim q$	$\sim (p \lor q)$	≡	$\sim p \wedge \sim q$
Negation laws:	$p \vee \sim p$	≡	T	$p\wedge \sim p$	≡	F
Universal bound laws:	$p \vee T$	≡	T	$p \wedge F$	≡	F
Identity laws:	$p \wedge T$	≡	p	$p \vee F$	≡	p
Taut/contra laws:	$\sim T$	≡	F	$\sim F$	≡	T

Is spinach on sale?	Do I go to the store?	Is it true that if
		ao to the store?
Yes.	Yes.	
Yes.	No.	
No.	Yes.	
No.	No.	

If spinach is not on sale, then I go to the store.

If spinach is not on sale, I do not go to the store.

If spinach is on sale, I do not go to the store.

An even degree is a necessary condition for a polynomial to have no real roots

means

If a polynomial function has no real roots, then it has an even degree.

A positive global minimum is a sufficient condition for a polynomial to have no real roots

means

If a polynomial function has a positive global minimum, then it has no real roots.

Values all of the same sign is a necessary and sufficient condition for a polynomial to have no real roots.

means

A polynomial function has values all of the same sign if and only if the function has no real roots.