Exercise 6 If $a \in A$ then $\mathscr{P}(A-\{a\}) \cap\left\{\{a\} \cup A^{\prime} \mid A^{\prime} \in \mathscr{P}(A-\{a\})\right\}=\emptyset$.
Proof. Suppose $a \in A$.

We have now reduced this problem into something of the form $B=\emptyset$, Set Form 3. This means we're going to have to use proof by contradiction: Suppose something is an element of the left side, and show that that supposition leads to a contradiction.

Further suppose $X \in \mathscr{P}(A-\{a\}) \cap\left\{\{a\} \cup A^{\prime} \mid A^{\prime} \in \mathscr{P}(A-\{a\})\right\}$
We chose a capital X to remind us that X is a set. Now, what does this supposition mean?

By the definition of intersection, $X \in \mathscr{P}(A-\{a\})$ and $X \in\left\{\{a\} \cup A^{\prime} \mid A^{\prime} \in\right.$ $\mathscr{P}(A-\{a\})\}$.

Remember- X is a set. Think about what the definition of powerset means.
By the definition of powerset, $X \subseteq A-\{a\}$.
Also, the second proposition tells us something more about X. Be careful not to reuse $A^{\prime} . A^{\prime}$ is a variable ranging over the elements of $\left.\mathscr{P}(A-\{a\})\right\}$. Pick a different symbol to refer to a specific one.

By set notation, there exists some $\left.X^{\prime} \in \mathscr{P}(A-\{a\})\right\}$ such that $X=$ $\{a\} \cup X^{\prime}$.

We have analyzed our supposition. Now, think about this intuitively. Why should this lead to a contradiction? The first part implies that a is not an element of X, but the second part implies that a is an element of X. We need to show those two things. Let's start with the second of the two.

Also by set notation, $a \in\{a\}$. Then, by definition of union, $a \in\{a\} \cup X^{\prime}$. This means $a \in X$ by substitution.

At this point, we could go on to prove that $a \notin X$, but here's a short cut: Remember that we've said $X \subseteq A-\{a\}$. Then...

By the definition of subset, $a \in A-\{a\}$. By the definition of difference $a \notin\{a\}$. Contradiction.

The contradiction is because we already proved $a \in\{a\}$.
Therefore, by definition of the empty set, $\mathscr{P}(A-\{a\}) \cap\left\{\{a\} \cup A^{\prime} \mid A^{\prime} \in\right.$ $\mathscr{P}(A-\{a\})\}=\emptyset$.

