
CS 335 — Software Development

Introduction to Design Patterns

Sept 5 and 7, 2007

Instead of being widely shared, the pattern languages which de-

termine how a town gets made becomes specialized and private.

Roads are built by highway engineers; buildings by architects;

parks by planners. . .

The people of the town themselves know hardly any of the

languages which these specialists use. And if they want to find

out what these languages contains, they can’t, because it is

considered professional expertise. The professionals guard their

language jealously to make themselves indispensable.

Alexander, The Timeless Way of Building, pg 231–232.

There were hundreds of people, each making his part within the

whole, working, often for generations. At any given moment

there was usually one master builder, who directed the overall

layout. . . but each person in whe whole had, in his mind, the

same overall language. Each person executed each detain in the

same general way, but with minor differences.

. . . The fact is that Chartres, no less than the simple farmhouse,

was built by a group of men, acting within a common pattern

language, deeply steeped in it of course. It was not made by

“design” at the drawing board.

Alexander, The Timeless Way of Building, pg 216–217.

The elements of [an architectural pattern language] are entities

called patterns. Each pattern describes a problem which occurs

over and over again in our environment, and then describes the

core of the solution to that problem, in such a way that you can

use this solution a million times over, without ever doing it the

same way twice.

Alexander, A Pattern Language, pg x.

Images from Google Maps.

Images from Google Maps.

Images from Google Maps.

Pattern 3: City Country Fingers

Problem: Continuous sprawling urbanization destroys life, and

makes cities unbearable. But the sheer size of cities is also valuable

and potent.

Solution: Keep interlocking fingers of farmland and urban land,

even at the center of the metropolis. The urban fingers should never

be more than 1 mile wide, while the farmland fingers should never be

less than 1 mile wide.

Alexander, A Pattern Language, pg 21 - 25.

Pattern 37: House Cluster

Problem: People will not feel comfortable in their houses unless a

group of houses forms a cluster, with the public land between them

jointly owned by all the householders.

Solution: Arrange houses to form very rough, but identifiable

clusters of 8 to 12 households around some common land and paths.

Arrange the clusters so that anyone can walk through them, without

feeling like a trespasser.

Alexander, A Pattern Language, pg 197 - 203.

Pattern 50: T Junctions

Problem: Traffic accidents are far more frequent where two roads

cross than at T junctions.

Solution: Lay out the road system so that any two roads which

meet at grade, meet in three-way T junctions as near 90 degrees as

possible. Avoid four-way intersections and crossing movements.

Alexander, A Pattern Language, pg 264-265 - 25.

Pattern 111: Half-Hidden Garden

Problem: If a garden is too close to the street, people won’t use

it because it isn’t private enough. But if it is too far from the street,

then it won’t be used either, because it is too isolated.

Solution: Do not place the garden fully in the front of the

house, nor fully to the back. Instead, place it in some kind of

half-way position, side-by-side with the house, in a position which is

half-hidden from the street and half-exposed.

Alexander, A Pattern Language, pg 545 - 547.

Pattern 112: Entrance Transition

Problem: Buildings, and especially houses, with a graceful transi-

tion between the street and the inside, are more tranquil than those

which open directly off the street.

Solution: Make a transition space between the street and the front

door. Bring the path which connects street and entrance through

this transition space, and mark it with a change of light, a change of

sound, a change of direction, a change of surface, a change of level,

. . . and above all with a change of view.

Alexander, A Pattern Language, pg 548–552.

Pattern 127: Intimacy Gradient

Problem: Unless the spaces in a building are arranged in a

sequence which corresponds to their degrees of privateness, the visits

made by strangers, friends, guests, clients, family, will always be a

little awkward.

Solution: Lay out the spaces of a building so that they create a

sequence which begins with the entrance and the most public parts

of the building, then leads into the slightly more private areas, and

finally to the most private domains.

Alexander, A Pattern Language, pg 610–613.

Pattern 136: Couple’s Realm

Problem: The presence of children in a family often destroys the

closeness and the special privacy which a man and wife need together.

Solution: Make a special part of the house distance from the

common areas and all the children’s rooms, where the man and

woman of the house can be together in private. Give this place

a quick path to the children’s rooms, but, at all costs, make it a

distinctly separate realm.

Alexander, A Pattern Language, pg 648 - 650.

Pattern 179: Alcoves

Problem: No homogenous room, of homogenous height, can serve

a group of people well. To give a group a chance to be together, as a

group, a room must also give them the chance to be alone, in one’s

and two’s in the same space.

Solution: Make small places at the edge of any common room,

usually no more than 6 feet wide and 3 to 6 feet deep and possibly

much smaller. These alcoves should be large enough for two people

to sit, chat, or play and sometimes large enough to contain a desk or

a table.

Alexander, A Pattern Language, pg 828 - 832.

Problem

You have a large amount of data of the same type on which you need

to perform the same operation.

Problem

You need to perform some operation on every item in an array.

Problem

You need the same functionality many times, in different contexts, at

different parts of the program.

Problem

You have several classes which are subtypes of the same type. For

one of their common operations, all classes implement the method

using the same basic algorithm. However, some of them differ in the

details of certain steps of the algorithm. You want to make it easy

for the classes to share code for the steps that are common to all,

but also easy for classes to change various steps.

Solution: Template Pattern

Define the skeleton of an algorithm in an operation, deferring some

steps to subclasses. Template Method lets subclasses redefine certain

steps of an algorithm without changing the algorithm’s structure

Gamma et al., Design Patterns, pg 325.

Problem

You have a super class that implements an operation involving the

instantiation of new instances. However, various subclasses will

instantiate different classes at this point.

Solution: Factory Method

Define an interface for creating an object, but let subclasses de-

cide which class to instantiate. Factory Method lets a class defer

instantiation to subclasses.

Gamma et al., Design Patterns, pg 107.

Problem

You have n classes that are different in structure and operations except

that there is one certain operation that they all must implement. That

operation could be implemented in m possible ways, and any of the n

planned classes could use any of the m implementations. You do not

want to write n×m classes to cover all the possible combinations.

Solution: Strategy

Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from

clients that use it.

Gamma et al., Design Patterns, pg 315.

Problem

It’s important for some classes to have exactly one instance. How do

we ensure that a class has only one instance and that the instance is

easily accessible?

Making a class’s methods and fields static will prevent the “object”

from being substituted polymorphically with other objects with the

same interface.

A global variable makes an object accessible, but it doesn’t keep you

from instantiated multiple objects.

Adapted from Gamma et al., Design Patterns, pg 127.

Solution: Singleton

Ensure a class only has one instance, and provide a global point of

access to it.

Make the constructor private, instantiate the single instance statically,

and provide a static method which will return that instance.

Adapted from Gamma et al., Design Patterns, pg 127.

Criticism

Some researchers have suggested that a pattern is “a solution to

a problem in a context,” citing Chris Alexander’s work in architec-

ture. . . Here are some thoughts on this.

1. A pattern is a template, not a specific solution.

2. Alexander’s “pattern” theory remains unaccepted by his peers.

3. No dictionary supports his definition of the word “pattern.” . . .

4. Although “a solution to a problem in a context” is a compelling writing style—after all, nearly

every sales letter follows it—that does not make an instance of that writing style a “pattern.”

Peter Coad, Object Models, pg xiv.

Criticism

[I]n the OO world you hear a good deal about ”patterns”. I wonder if

these patterns are not sometimes evidence of [the need to make code

transformations the compiler should do]. When I see patterns in my

programs, I consider it a sign of trouble. . . Any other regularity in the

code is a sign, to me at least, that I’m using abstractions that aren’t

powerful enough. often that I’m generating by hand the expansions

of some macro that I need to write. . . .

Peter Norvig found that 16 of the 23 patterns in Design Patterns
were “invisible or simpler” in Lisp.

Paul Graham, “Revenge of the Nerds”

