
15. Given the node class

public class Node {

private int datum;

private Node next;

public Node(int d, Node n) {

datum = d;

node = n;

}

public Node next() { return next; }

public int datum() { return datum; }

public void setNext(Node next) { this.next = next; }

}

complete the following list class. If the list is empty, removeHead() is undefined
(that is, you are not responsible for that case; it is ok, for example, if an exception
is thrown.) (16 points.)

public class List {

private Node head;

public List() { head = null; }

public void addToFront(int item) { // add a new element at front

}

public void removeHead() { // remove the first element

}

public int average() { // find the average of all elements

}

}

4



16. Given the following Node class for a recursive version of a list, write the method
contains which will return true if this node or any node following it contains the
given item (that is, true if item is in the list), and false otherwise. You may not

test if any reference is null. (Hint: Use exception handling.) (10 points.)

public class Node {

private int datum;

private Node next;

public boolean contains(int item) {

}

}

5



17. Write a class that will emu-
late a stop watch. For example,
when you turn the stop watch on,
it initially reads 0 seconds. Then
you press the start button, and af-
ter 3 seconds, you press the stop
button. It now reads 3. Pressing
the stop button again, when it is al-
ready stopped, does nothing. Your
press the start button a second time
and let it run for 5 seconds (press-
ing it a third time, while it is already
running, does nothing). When you
press the stop button again, it reads
8 seconds (3 + 5). Your class should
have methods void start(), void
stop(), and int getTime(). The
method getTime() should return
the total elapsed milliseconds that
the watch had been running. The
class should work in the driver to
the left.

import java.util.Scanner;

public class SWDriver {

public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);

StopWatch sw = new StopWatch();

System.out.println("What is your name?");

sw.start();

String name = keyboard.nextLine();

sw.stop();

System.out.println("How old are you?");

sw.start();

String age = keyboard.nextLine();

sw.stop();

System.out.println("What is your quest?");

sw.start();

String quest = keyboard.nextLine();

sw.stop();

System.out.println(name + ", it took you an ave of "

+ (sw.getTime() / 3.0)

+ " ms to answer each question.");

}

}

Hints: Use the method System.currentTimeMillis() returns the current state of the

computer’s clock (number of milliseconds since midnight, Jan 1, 1970); assume

System.currentTimeMillis() returns an int. Your class will have to model the fact

that a stop watch can be in either a “running” or “not running” state. (12 points)

4



18. a. Write a method which, given an array of ints containing the digits of a
number will return that integer. For example, given 2 5 3 4 1 , it would
return 25341. (8 points)

b. Write a method which, given a String containing an integer, will return the
equivalent int. For example, given "25341", it will return 25341. You may assume
the String you are given is correct—it contains an integer and only an integer. Hint:
Recall arithmetic operations on chars that you did in the Caesar cipher projects.
The codes for the digits are consecutive in the order you would expect them, 0123
etc. (8 points)

5



20. Write a class that keep track of the check-out history of books and patrons in a
library. Every time a book is checked out, this is reported to an object of this class
using the method checkedOut(). The method booksCheckedOut(), given the name
of a patron, will return a String listing the books the patron has checked out. The
method patronsCheckedOutBy(), given the name of a book, will return a String

listing the patons who have checked out this book. Your class should implement the
following interface

interface LibraryRecord {

void checkedOut(String patron, String book);

String booksCheckedOut(String patron);

String patronsCheckedOutBy(String book);

}

Hint: Use two HashMap<String,String>s, whose interface is found on the next
page. (12 points)

9



public class HashMap<String> {

// Test if this map has a value associated with a given key

public boolean containsKey(String key);

// Retrieve the value associated with a given key

// (null if none)

public String get(String key);

// Associate a given value with a given key

public void put(String key, String value);

}

10


