Unless otherwise noted, assume $f: X \to Y$.

5.4.6. If
$$A, B \subseteq Y$$
, then $F^{-1}(A \cap B) = F^{-1}(A) \cap F^{-1}(B)$.

Proof. Suppose $A, B \subseteq Y$.

First, suppose $x \in F^{-1}(A \cap B)$. By definition of inverse image, $f(x) \in A \cap B$. By definition of intersection, $f(x) \in A$ and $f(x) \in B$. By definition of inverse image, $x \in F^{-1}(A)$ and $x \in F^{-1}(B)$. By definition of intersection, $x \in F^{-1}(A) \cap F^{-1}(B)$. Hence, by definition of subset, $F^{-1}(A \cap B) \subseteq F^{-1}(A) \cap F^{-1}(B)$.

The other direction is symmetric. \Box

5.6.3. If $A \subseteq X$ and f is one-to-one, then $F^{-1}(F(A)) \subseteq A$.

Proof. Suppose $A \subseteq X$ and f is one-to-one.

Further Suppose $x \in F^{-1}(F(A))$. By definition of inverse image, $f(x) \in F(A)$. By definition of image, there exists $a \in A$ such that f(a) = f(x). [Note that we do not yet know $x \in A$! The fact that $f(x) \in F(A)$ only gives us that there exists some $a \in A$ such that f(a) = f(x).]

By definition of one-to-one, x = a. By substitution, $x \in A$. By definition of subset, $F^{-1}(F(A)) \subseteq A$. \Box .

If you find a slightly longer version more clear, here it is:

Proof. Suppose $A \subseteq X$ and f is one-to-one.

Further Suppose $x \in F^{-1}(F(A))$. By definition of inverse image, $f(x) \in F(A)$. Let y = f(x). By definition of image, there exists $a \in A$ such that f(a) = y. By substitution, f(a) = f(x).

By definition of one-to-on, x = a. By substitution, $x \in A$. By definition of subset, $F^{-1}(F(A)) \subseteq A$. \Box .

5.6.4. If $A \subseteq Y$ and f is onto, then $A \subseteq F(F^{-1}(A))$.

Proof. Suppose $A \subseteq Y$ and f is onto.

Further suppose $y \in A$. By definition of onto, there exists $x \in X$ such that f(x) = y. By definition of inverse image, $x \in F^{-1}(y)$. By definition of image, $y \in F(F^{-1})(y)$. \Box

5.8.3. If $f: A \to B$, $g: B \to C$, $h: C \to D$, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. Suppose $f : A \to B, g : B \to C, h : C \to D$. Suppose $a \in A$. Then

$$\begin{aligned} h \circ (g \circ f)(a) &= h(g \circ f(a)) & \text{by definition of function composition} \\ &= h(g(f(a))) & " & " \\ &= h \circ g(f(a)) & " & " \\ &= (h \circ g) \circ f(a) & " & " \end{aligned}$$

Therefore, by definition of function equality, $h \circ (g \circ f) = (h \circ g) \circ f$. \Box

5.8.4. If $f: A \to B$ and $g: B \to C$ are both onto, then $g \circ f$ is also onto.

Proof. Suppose $f : A \to B$ and $g : B \to C$ are both onto.

Suppose $c \in C$. By definition of onto (since g is onto), there exists a $b \in B$ such that g(b) = c. Similarly (since f is onto), there exists an $a \in A$ such that f(a) = b.

By substitution, g(f(a)) = c. By definition of function composition, $g \circ f(a) = c$.

Therefore, by definition of onto, $g \circ f$ is onto. \Box

5.8.5. If $f: A \to B$, $g: B \to C$, and $g \circ f$ is one-to-one, then f is one-to-one.

Proof. Suppose $f : A \to B$, $g : B \to C$, and $g \circ f$ is one-to-one.

Further suppose $x, y \in A$ such that f(x) = f(y). By substitution, g(f(x)) = g(f(y)). By definition of function composition, $g \circ f(x) = g \circ f(y)$. By definition of one-to-one (since $g \circ f$ is one-to-one), x = y.

Therefore, by definition of one-to-one, f is one-to-one. \Box