Unless otherwise noted, assume $f: X \rightarrow Y$.
5.4.6. If $A, B \subseteq Y$, then $F^{-1}(A \cap B)=F^{-1}(A) \cap F^{-1}(B)$.

Proof. Suppose $A, B \subseteq Y$.
First, suppose $x \in F^{-1}(A \cap B)$. By definition of inverse image, $f(x) \in$ $A \cap B$. By definition of intersection, $f(x) \in A$ and $f(x) \in B$. By definition of inverse image, $x \in F^{-1}(A)$ and $x \in F^{-1}(B)$. By definition of intersection, $x \in F^{-1}(A) \cap F^{-1}(B)$. Hence, by definition of subset, $F^{-1}(A \cap B) \subseteq F^{-1}(A) \cap F^{-1}(B)$.
The other direction is symmetric.
5.6.3. If $A \subseteq X$ and f is one-to-one, then $F^{-1}(F(A)) \subseteq A$.

Proof. Suppose $A \subseteq X$ and f is one-to-one.
Further Suppose $x \in F^{-1}(F(A))$. By definition of inverse image, $f(x) \in$ $F(A)$. By definition of image, there exists $a \in A$ such that $f(a)=f(x)$. [Note that we do not yet know $x \in A$! The fact that $f(x) \in F(A)$ only gives us that there exists some $a \in A$ such that $f(a)=f(x)$.]
By definition of one-to-one, $x=a$. By substitution, $x \in A$. By definition of subset, $F^{-1}(F(A)) \subseteq A$.

If you find a slightly longer version more clear, here it is:
Proof. Suppose $A \subseteq X$ and f is one-to-one.
Further Suppose $x \in F^{-1}(F(A))$. By definition of inverse image, $f(x) \in$ $F(A)$. Let $y=f(x)$. By definition of image, there exists $a \in A$ such that $f(a)=y$. By substitution, $f(a)=f(x)$.
By definition of one-to-on, $x=a$. By substitution, $x \in A$. By definition of subset, $F^{-1}(F(A)) \subseteq A$.
5.6.4. If $A \subseteq Y$ and f is onto, then $A \subseteq F\left(F^{-1}(A)\right)$.

Proof. Suppose $A \subseteq Y$ and f is onto.
Further suppose $y \in A$. By definition of onto, there exists $x \in X$ such that $f(x)=y$. By definition of inverse image, $x \in F^{-1}(y)$. By definition of image, $y \in F\left(F^{-1}\right)(y)$.
5.8.3. If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$, then $h \circ(g \circ f)=(h \circ g) \circ f$.

Proof. Suppose $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$.
Suppose $a \in A$. Then

$$
\begin{aligned}
h \circ(g \circ f)(a) & =h(g \circ f(a)) \quad \text { by definition of function composition } \\
& =h(g(f(a))) \quad " \quad " \\
& =h \circ g(f(a)) \quad " \quad " \\
& =(h \circ g) \circ f(a) "
\end{aligned}
$$

Therefore, by definition of function equality, $h \circ(g \circ f)=(h \circ g) \circ f$.
5.8.4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both onto, then $g \circ f$ is also onto.

Proof. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are both onto.
Suppose $c \in C$. By definition of onto (since g is onto), there exists a $b \in B$ such that $g(b)=c$. Similarly (since f is onto), there exists an $a \in A$ such that $f(a)=b$.
By substitution, $g(f(a))=c$. By definition of function composition, $g \circ f(a)=c$.
Therefore, by definition of onto, $g \circ f$ is onto.
5.8.5. If $f: A \rightarrow B, g: B \rightarrow C$, and $g \circ f$ is one-to-one, then f is one-to-one.

Proof. Suppose $f: A \rightarrow B, g: B \rightarrow C$, and $g \circ f$ is one-to-one.
Further suppose $x, y \in A$ such that $f(x)=f(y)$. By substitution, $g(f(x))=g(f(y))$. By definition of function composition, $g \circ f(x)=$ $g \circ f(y)$. By definition of one-to-one (since $g \circ f$ is one-to-one), $x=y$.
Therefore, by definition of one-to-one, f is one-to-one.

