
CSCI
243

Discrete Mathematics and Functional Programming

Fall 2011 MFW 2:00-3:05 pm SCI 131

http://csnew.wheaton.edu/˜tvandrun/cs243

Thomas VanDrunen
T630-752-5692 H630-639-2255 BThomas.VanDrunen@wheaton.edu

Office: SCI 163 Office hours: MThF 3:15-5:00 pm; Th 9:15-11:00 am.

Contents

CATALOG DESCRIPTION. Sets, logic, the nature of proof, induction, algorithms, algorithm correct-
ness, relations, lattices, functions, and graphs. Functional programming and recursion using
the ML programming language.

OBJECTIVES. The chief goal of this course is to teach you formal reasoning, practiced under two
heads: mathematical proofs and computer programs. At the end of this course you should be
able to

• Manipulate symbolic logical forms.

• Write mathematical proofs, especially for results from basic set theory.

• Write simple programs in the ML programming language.

Other themes include

Writing and using formal definitions. We look carefully at how to define formal, rigorous defi-
nitions of mathematical ideas, built from primitive terms.

Thinking recursively. Recursion is defining something in terms of itself. This technique is cru-
cial both to programming and to some kinds of mathematical definitions and proofs.

Analysis and synthesis. Many of our proofs and programs comprise two main steps: breaking
something apart and putting something else together.

OUTLINE. This course is organized under the following headings:

Set and List. We meet the basic mathematical concepts of set, element, set operations, cardi-
nality, Cartesian products, and powersets. We begin the basics of the ML programming
languages including functions and datatypes. We learn to use ML’s main composite type,
the list.

Proposition. We explore the system of boolean logic (the “first-order predicate calculus”). This
heading is characterized by three “games” to exercise your understanding of symbolic logic:
1. verifying logical equivalences; 2. verifying argument forms; 3. verifying argument forms
with quantification. We also write ML programs that use boolean operators and consider
how the quantification of a program specification affects the algorithm to solve it.

Proof. This is the turning point of the semester, perhaps the most important heading. We learn
to write careful mathematical proofs of set-theoretical propositions. This includes one of
the most challenging sections, proofs about powersets. We also consider the connections
between proofs and algorithms.

1



Relation. We build on our understanding of sets to consider the definition of mathematical rela-
tions and their properties, propositions about them, and programs that manipulate them.
Relations are useful concepts in themselves, but this heading also gives us opportunity to
practice further the proving and programming techniques from earlier in the course.

Self reference. Earlier parts of our study will have introduced recursive definitions, but here we
take the idea head-on. Specific topics are recursive types in ML programming and proofs
using structural and mathematical induction.

Function. We study functions as mathematical objects built on set theory, as we will have done
for relations. The proofs in this section are an apex of the mathematical topic stream. We
also learn idioms in ML programming based on the theory of functions.

Your choice. At the end of the semester, you will choose one of several topics for a self-directed
study.

For a detailed outline, see the table of contents in your textbook. For a schedule, see the course
website.

Course procedures

HOW WE DO THIS COURSE. This course has a pretty predictable rhythm to it. Class time is mainly
for working out new kinds of problems together. There will be daily assignments. Tests come
when we get to good stopping points.

Before class you are to read the assigned sections from the textbook. In class I will review and
highlight material, especially definitions, that you have read. I will avoid lecturing, preferring
to devote most of our meeting time to practicing sample problems. Some class periods will also
include demonstrations of new ML features. At the end of each class I will assign problems from
the book, which will also be posted on the course website. These will be a mix of pencil-and-
paper exercises for the math portion (mostly proofs) and programming exercises for the computer
science portion (the latter to be turned in by email).

READINGS. It is important that you read the assigned sections for each day. The readings fit into
three categories.

Read carefully means that I will not cover that material in class at all. It’s background stuff for
what we really want to talk about. You’re solely responsible for it.

Read means that I will highlight and review the main ideas but not lecture on them. I will assume
you have seen them before. We will work on sample problems from those sections in class.

Skim means that this is very difficult material that most students will need to see twice to
understand. Familiarize yourself with it first, and then I will lecture on it in class.

PROJECT. For the last two weeks of the course you will choose from one of the topics below (these
are extra chapters in the book that will be available online) and work through it. You may work
together with one or two other people. Class time will be used to meet with me on your progress.

Available chapters: Graph, Complexity Class, Lattice, Group, Automaton.

GRADING. There will be three tests (scheduled for Sept 23, Oct 21, and Nov 18, subject to change)
and a final (Thursday, Dec 15 at 8:00 am).

instrument weight
Homework 22
Test 1 13
Test 2 13
Test 3 13
Project 10
Final exam 29

2



I will also give one point of extra credit (applied towards homework) for every mistake you find
in the textbook, if you are the first to discover it. Bigger suggestions about the presentation (like
new exercises and examples or ways to make a section more understandable) will be rewarded
appropriately.

FOLLOW THIS COURSE ON TWITTER. You are encouraged to get a Twitter account and follow
@TVD_CSCI243 for announcements like changes to the schedule. If you don’t use Twitter and
strongly do not want to start, email me and I’ll add your email address to an alternate list for
announcements.

HOW TO SUCCEED IN THIS COURSE. By this point in your academic career you should have
developed good study habits and found what works best for you. In my experience, however, its
seems many students could still use a few pointers.

Prepare for class. Set aside time the day before or in the morning to think about what we will be
covering. Take the readings seriously. Try some of the exercises in the sections before we cover
them in class.

Take the right amount of notes. You need to be active in class, working through the problems
we’re doing on the board. That said, some of you need to go easy on the note-taking. I feel
sorry for the students who seem to think that their main task in class is to transcribe everything
written on the board. So busy writing, they don’t have time to process what’s going on in class.
I wrote the course manual in a way that should minimize the need to take notes. I’d rather you
put your energy into thinking.

Keep up with the material. The material in this class keeps on building on itself. If you don’t
understand something, don’t just shrug it off and move on. Even if it doesn’t seem like last
week’s material is being used this week, last week’s material is going to come back later.

When all else fails, ask for help. A lot of learning in a class like this happens during office hours.

Policies etc

ACADEMIC INTEGRITY. Students are encouraged to discuss homework problems and ideas for
solutions. However, your solutions, proofs, and programs must be your own. If you are having
trouble debugging a program you have written, you may show it to a classmate to receive help;
likewise you may inspect a classmate’s incorrect program to give help. However, you should not
show correct code to a classmate, nor should you look at another student’s correct code, to give
or receive help. Homework on which students have unfairly collaborated will not be accepted.

ASSIGNMENTS. Unless otherwise specified, assignments are due at the class period after it was
assigned. I will collect the assignments at the end of class. However, you are granted an auto-
matic grace period until 5:00 pm that day. Assignments not complete by class time can be put
in the instructor’s box. If you have not completed the assignment by the end of the grace period
(5:00 pm), then turn in what you have at that time for partial credit.

ATTENDANCE. Students are expected to attend all class periods. It is courtesy to inform the
instructor when a class must be missed.

EXAMINATIONS. The final exam is Thursday, Dec 15, at 8:00 AM. I do not allow students to take
finals early (which is also the college’s policy), so make appropriate travel arrangements.

SPECIAL NEEDS. Whenever possible, classroom activities and testing procedures will be adjusted
to respond to requests for accommodation by students with disabilities who have documented
their situation with the registrar and who have arranged to have the documentation forwarded
to the course instructor. Computer Science students who need special adjustments made to
computer hardware or software in order to facilitate their participation must also document their
needs with the registrar in advance before any accommodation will be attempted.

OFFICE HOURS. I try to keep a balance: Stop by anytime, but prefer my scheduled office hours.
I consider 3:15–5:00 pm everyday to be my unofficial office hours this semester, but on some
Tuesdays and Wednesdays I will have conflicts during that time. Also, any time my door is

3



closed, it means I’m doing something uninterruptable, such as making an important phone call.
Rather than knocking, please come back in a few minutes or send me an email.

DRESS AND DEPORTMENT. Please dress in a way that shows you take class seriously—more like
a job than a slumber party. (If you need to wear athletic clothes because of activities before or
after class, that’s ok, but try to make yourself as profession-looking as possible.) If you must eat
during class (for schedule or health reasons), please let the instructor know ahead of time; we
will talk about how to minimize the distraction.

ELECTRONIC DEVICES. Please talk to me before using a laptop or other electronic device for
note-taking. I will discourage you from doing so; if you can convince me that it truly aides
your comprehension, then I will give you a stern warning against doing anything else besides
note-taking. Trying out programming concepts on your own during class time is not productive
because it takes you away from class discussion. You cannot multi-task as well as you think
you can. Moreover, please make sure other electronic devices are silenced and put away. Text
in class and DIE.

4


