4.2.8.

Proof (long version). Suppose $x \in A \times(B-C)$. By definition of Cartesian product, $x=(a, d)$ for some $a \in A$ and $d \in B-C$. By definition of difference, $d \in B$ and $d \notin C$.
By definition of Cartesian product, $(a, d) \in A \times B$. Also by definition of Cartesian product, this time used negatively, $(a, d) \notin A \times C$.
[That is, we rewrite $d \notin C$. as $\sim(d \in C)$. By generalization, $\sim(d \in$ $C \wedge a \in A)$. By definition of Cartesian product, $\sim((a, d) \in A \times C)$. This can be rewritten as $(a, d) \notin A \times C$.]
By definition of difference, $(a, d) \in(A \times B)-(A \times C)$. By substitution, $x \in(A \times B)-(A \times C)$. Therefore, by definition of subset, $A \times(B-C) \subseteq$ $(A \times B)-(A \times C)$.
Proof (short version). Suppose $(a, d) \in A \times(B-C)$. By definition of Cartesian product, $a \in A$ and $d \in B-C$.
By definition of difference, $d \in B$ and $d \notin C$. By definition of Cartesian product, $(a, d) \in A \times B$ and $(a, d) \notin A \times C$.
By definition of difference, $(a, d) \in(A \times B)-(A \times C)$. Therefore, by definition of subset, $A \times(B-C) \subseteq(A \times B)-(A \times C)$.

