
Notes on CLRS Problem 15-7 (Viterbi algorithm)

There are several things that I think are confusing in the presentation of this problem. First, they
start the problem by mentioning the application to speech recognition. While it is great to see the
context/usefulness of an algorithm, I think that is a distractor at this point. In fact, besides speech
recognition, the Viterbi algorithm has a wider range of applications in computational linguistics and
machine learning. (The general use of the Viterbi algorithm is, given a hidden Markov model and
a sequence of observations, what is the most likely sequence of states the model would have passed
through to produce those observations? But you don’t need to know anything about that.)

Instead, I suggest you first think of the problem just in terms of graphs. In part (a), your input is a
graph G = (V,E), but assume that every edge is labeled; Σ = {σa, σb . . .} is the set of labels. You’re
also given a sequence of labels drawn from Σ, call is s = 〈σ1, σ2, . . . σk〉. You’re looking for a path
from a given starting point v0 with that sequence of labels on its edges. Suppose we are given the
following graph with labels Σ = {g, s, y, z}:

s

y

z

y

g

y

s

y

z

g

y

s

y

v0

v1

v2

v3

v4

v5

v6

If the label sequence is syzygy, then a path starting at v0 that has that label sequence is v0, v1, v2, v3, v2, v4, v5
(although it is not the only such path; v0, v1, v2, v3, v2, v4, v6 would also work).

In part (b), you need to assume that each edge has not only a label but also a probability ; you want
to find the path that is most likely, that is, has the greatest probability. (You actually don’t need to
think of this value as a probability to do this problem. . . just think of them as some positive numeric
value, and you want to maximize the product of all such values on the path.)

Even after we understand the big picture of the problem, it still seems like various assumptions are
omitted from CLRS’s presentation of problem—assumptions that lead to subtle gotchas in what
would be intuitive solutions and great difficulties in the analysis. For example, is the graph simple?
It seems plausible that there may well be parallel edges between some v and u that have different
labels. We certainly should not assume that a vertex has at most one outgoing edge for a given σ,
that is, we certainly could have

v0

v1

v2

v3

σ1

σ2

σ1

Now, the problem is phrased as “find an efficient algorithm,” which is code for “use dynamic pro-
gramming.” However, it is worthwhile to consider, as scratch work, how one would modify BFS and

1

DFS to do this. Here is the difficulty with BFS. Suppose our sequence is s = 〈σ1, σ2, σ3, σ4〉 and our
graph includes

v0

v2

v1

v3

v4

σ1

σ2

σ3

σ4
σ1

So we can’t just associate each vertex with a “parent” to retrace our steps. Instead, let’s try DFS.
Assume that our input is the current list r (of edge labels) and the current vertex v (this is a
recursive algorithm, and the first call to it will have v0 and s as its input). It returns a list of
vertices (the path found) or NSP (no such path) (the return type is a union type of sorts).

(I’m using a pseudo-ML here since we’re using lists a lot.)

Find Seq(v, r):
if r = nil

return [v]
else

σ = hd(r)]]
for all u ∈ v.adj

if (v, u) has label σ
t = Find Seq(u, tl(r))
if t 6= NSP

return cons(v, t)
return NSP

Analysis: the worst case (as far as I can imagine it) is a super-complete graph where every vertex
pair having an edge for every sound in Σ except that only one pair (say (x, y) has σk. Any k − 1-
length paths will work as a prefix, but how many k − 1-length false paths can it have? Well, it’s
basically (or, slightly less than) the number of permutations of of size k of the vertices:

|V |!
(|V | − k)!

= O(V !)

. . . and that assumes there are no self-loops or backedges! Ok, let’s see if BFS makes more sense.
We will keep a worklist of paths (as lists). Note this worklist doesn’t need to be a queue;

Find Seq(v0, s):
w = [[v0]] //initial worklist
for σ ∈ s

if w is empty, return NSP
w′ = [] //the next worklist
for p ∈ w

v = hd(p)
for u ∈ v.adj

if (v, u) has label σ

2

w′ = cons(cons(u, clone(p)), w′)
w = w′

return hd(w)

Even an incomplete analysis (of an insane worst case) should be enough to scare people off. How
many iterations will there be for the second loop? Well, the first iteration of the outermost loop will
have only one iteration of the second loop; in the worst case, v0 may have σ1-labelled edges to every
other vertex, so on the second iteration of the outermost loop, the second loop may have |V | − 1
iterations. Actually, let’s not assume there are no self-loops: make it |V | iterations. If each of those
have σ2-labeled edges to every other one, then the next iteration of the outermost loop will have
|V |2 iterations of the second loop. This gives us

k−1∑
i=0

|V |i

. . . and let’s not forget that this same worst-case would mean that the innermost loop will have |V |
iterations every time. We have O(V k+1).

I would note that for each of these, if we had a reasonably sparse graph, they shouldn’t be such bad
algorithms, and that certain assumptions might allow us to optimize these algorithms further.

Finally, here is how to set up a dynamic programming approach, which I believe is the right answer,
or at least a right answer. Remember, we want to find a path, so subproblems will involve subpaths.
We can break paths down by at-which-vertex-are-we-after-so-many-steps questions. Also, assume
we can refer to vertices by number.

Let Mi,j be a vertex that precedes vj on a path of length i from v0 to vj , if any, where the edges in
that path are labeled with the first i labels in the input sequence. Note that there might be more
than one vertex that would be a correct value for Mi,j ; in part (a), any such vertex will do. If there
is no such vertex, you can store something like None (to use pseudo-Python).

Once you have populated the table for M , you can reconstruct the path by picking any vertex j for
which Mk,j is not None and using the values in M to work backwards to v0.

(Hint: In my solution I assumed there was a Set data structure available that had an any() operation
that returned an arbitrary element of the set.)

Part (b) has the following difference: We also need the concept (and corresponding table) of Pi,j ,
the probability of the most probable path from v0 to vj , and Mi,j is the previous vertex on that
most probable path.

3

