
Summary of the mathematics and formulas for language
models
The maximum likelihood estimation (MLE) refers to a model that gives a higher probability
to the training data than any other model does. This can be done using a model based on
relative frequency. That is, if the count for a word w is C(w), then the probability that MLE
(or RF) gives to the word is

PMLE (w) =
C(w)

N

. . . where N is the number of tokens in the training data.

The most commonly used intrinsic evaluation of a language model is perplexity : we take
a test set and compute the total probability that the language model assigns to that test
set, take the reciprocal, and normalize by the size of the test set. You can think of this
“normalization” as taking the geometric mean of the probabilities assigned to the individual
words. If the test set has K tokens, then

perplexity = (
∏K

i=1 P (wi | h))
−1
K

= K

√
1∏K

i=1 P (wi | h)

Now, we shouldn’t compute perplexity directly because multiplying all those probability
values will cause underflow—the product keeps getting smaller the more things we multiply.
Instead we should convert this to logarithms. Summing logs (and then computing the ex-
ponentiation of the result) is the same as multiplying original values. Using base B, we can
compute perplexity as

(B
∑K

i=1 logB P (wi | h))
−1
K

The information theory topics we’ll be studying in the next couple of weeks should increase
your intuition about perplexity, but for now you can think of perplexity as a measure of
how surprised the model is by the test data. Low perplexity is good; it means the model
did well predicting the test data. If the model assigned zero probability to any word, then
perplexity will be infinite, which is bad. This, of course, will happen in a maximum likelihood
estimation for any word never seen in the training data.

The simplest way to avoid the zero probability that MLE gives to unseen words Laplace
(“Add-One”) smoothing: simply add one to each word count, and increase the divisor ap-
propriately.

PLaplace(w) =
C(w) + 1

N + V

Laplace smoothing tends not to get good results. After all, 1 is a completely arbitrary
value to increase all the counts by. Instead, the Good-Turing estimation provides a better
way, not only of avoiding the (infinitely) underestimate for unseen words but avoiding the

1

overestimate for seen words. The Good-Turing estimation considers the probability of seeing
a word of a certain frequency class. If r is a word count (for example, C(w) = r for some
type w), the nr is the count of counts, the number of types with that count. The probability

of seeing a word from that class generally is (r+1)nr+1

N
. The probability of seeing a specific

word w of that class is

PGT (w) =
(r + 1)nr+1

Nnr

But Good-Turing, in this basic form, won’t work at all for high-frequency words, since nr+1

could be zero. We have a few options for making Good-Turing practical. The easiest way
is to use Good-Turing on unseen words, use MLE for common words (say, seen more than
5 times, or, more generally, k times), and for the rare words use Good-Turing but scaled
so that all the probability mass “donated” to the unseen words comes from the rare words.
How to do that scaling is pretty difficult; fortunately we can look the formula up. This is
what we’re calling Katz’s k-cut-off.

PGT−Katz (w) =

n1
Nn0

if C(w) = 0

(r+1)
nr+1
nr
−r (k+1)·nk+1

n1

N(1−(k+1)·nk+1
n1

if 1 ≤ r = C(w) ≤ k

C(w)
N otherwise

The other option for making Good-Turing practical is to smooth the frequencies. We know
by Zipf’s law what the graph of counts (r) vs counts of counts (nr) will look like. Moreover,
graphed on a log-log scale (so, log r vs log nr) will be a straight line. . . -ish. We can use
regression analysis to fit a line.

In general, regression analysis works this way. If you have k points with x-coordinates
x1, x2, . . . xk and y-coordinates y1, y2, . . . yk, then compute the “average” x and y:

x̄ =
∑

xi

k

ȳ =
∑

yi
k

Then the slope of the line can be found by

m =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

. . . and the y-intercept by

2

b = ȳ −mx̄

Thus we have the line

y = mx+ b

This line relates r and nr. Well, actually it relates log r and log nr, so if we want an estimate
for nr given r, we need

nr ≈ Bm logB r+b

Again, B is (in theory) any base (don’t confuse it with b). However, the choice of base might
affect whether values underflow or overflow. I had more success with a larger base (say 40).
Putting this together, we have (letting r = C(w)),

PSGT (w) =
(r + 1)Bm logB(r+1)+b

NBm logB r+b

Also, since it is only for high frequency words that regular Good-Turing is bad for, we could
use this regression-analysis version only for high frequencies, reverting to normal Good-
Turing for low frequency words.

Finally, we can interpolate k language models:

PLI (w) =
k∑

j=1

λjPj(w)

The λs must sum to 1. The trick is finding the best λs. We can do this by maximizing the
model’s performance on some held-out set, ie data similar to the training set but reserved
for tuning the model. If the held-out set has M tokens, then

• Initialize the λs, for example, to λj = 1
k
.

• Repeat

– Compute zij for each token wi and model Pj, which measures how much contri-
bution Pj makes towards the overall model’s probability for token wi.

zij =
λjPj(wi |hi)∑k

jj=0 λjjPjj (wi | hi)

– Compute new λs using the average of these zijs

λj =
1

M

M∑
i=1

zij

3

• Until convergence, that is, two successive set of λs show similar performance.

`(λold)− `(λnew)

|`(λnew)|
≤ ε

where

`(λ) =
1

M

M∑
i=1

log
k∑

j=1

λjPj(wi | hi)

That last formula is called the average log likelihood, and it is similar to perplexity. The
algorithm sketched above is a simplified (or “degenerate”) form of the more general EM
(expectation-maximization) algorithm for tuning the parameters to a language model.

Throughout this document we have assumed unigram-based models (except where we’ve
used P (w | h), where we imply that a history of some size may be taken into account). But
any of these can be used with models of higher N -grams.

4

