1.8.2 Use Venn diagrams (supplemented with verbal explanations, as necessary) to demonstrate that $(A-B) \cap(B-A)=\emptyset$; that is, $A-B$ and $B-A$ are disjoint.
1.8.3 One might be tempted to think $|A \cup B|=|A|+|B|$, but this is not true in general. Why not? (In mathematics, "in general" means "always.") Under what special circumstances is it true? (Assume A and B are finite.)
1.9.5 Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.
1.9.6 Explain how \mathbb{C}, the set of complex numbers, can be thought of as a Cartesian product.
1.9.7 Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as $(1,2)$ and $\frac{3}{4}$ as $\left.(3,4)\right)$ and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets cannot be thought of as two different ways to write the same set. (There are at least two reasons.)

