
Axiom. Linguistic phenomena tend to follow Zipf’s law.

Lemma. Good-Turing adjusted counts are pretty good.

Proof. General consensus of language researchers after decades of use. �

Theorem. Laplace adjusted counts are bad.

Proof. (After Gale and Church, 1994.) Suppose Laplace adjusted counts
were good. Then, by the Lemma and the transitivity of goodness, they would
be similar to GT adjusted counts, that is,

(r + 1) · N
N + V

≈ (r + 1) · nr+1

nr

Let ρ = N
N+V . Then

n1 = ρ · n0

n2 = ρ · n1 = ρ2 · n0

nr = ρr · n0

log nr = log(ρr · n0)
= log ρr + log n0

= r · log ρ + log n0

But Zipf’s law (r · f = c) predicts

r · nr = c for some c
log(r · nr) = log c = d for some d

log r + log nr = d
log nr = d − log r

Thus Laplace smoothing assumes log nr is linearly related to r (nr and r
makea a straight line on a semi-log graph), but Zipf’s law predicts that log nr
is linearly related to log r (nr and r make a straight line on a log-log graph).
Hence Laplace smoothing is not good. At least, it is not Good-Turing. �

frequency
r

of the

frequency

frequency

n
r

log r

log n
r

0

Katz’s k cut off for k = 5, intuitive but wrong version:

adjusted count n1
n0

2·n2
n1

3·n3
n2

4·n4
n3

5·n5
n4

6·n6
n5

6 · · · · · · · · · 100

count 0 1 2 3 4 5 6 · · · · · · · · · 100︸ ︷︷ ︸
use GT

︸ ︷︷ ︸
use MLE

Katz’s k cut off, constrained to make it a probability function:

1 =
∑
w

P(w)︸ ︷︷ ︸
need

=
∑

w | c(w)=0

P(w)

︸ ︷︷ ︸
unseen words, keep GT

+
∑

w | 1≤C(w)≤k

P(w)

︸ ︷︷ ︸
rare words, adjust GT

+
∑

w | C(w)>k

P(w)

︸ ︷︷ ︸
common words, keep MLE

Katz’s k cut off, constrained to make it a probability function:

∑
w | c(w)=0 PGT (w) =

∑
w | 1≤w≤k (PMLE (w)− PGTS(w))

n1

N︸︷︷︸
total GT prob
of unseens

=
k∑

i=1︸︷︷︸
summation
over
frequencies,
not types

(
ni · i
N︸ ︷︷ ︸

total MLE prob
for freq i

− µ︸︷︷︸
scaling
factor,
what we
want to
find

·(i + 1) · ni+1

N
)

=
∑k

i=1 ni ·
(

i

N
− µ · (i + 1) · ni+1

N · ni

)

n1 =
∑k

i=1 i · ni − µ ·
∑k

i=1

ni + 1

ni

Katz’s k cut off, formlua to grab off the shelf and use:

PGT−Katz(w) =

n1
N ·n0

if C (w) = 0

(r+1)·nr+1
nr
−r · (k+1)·nk+1

n1

N ·
(
1− (k+1)·nk+1

n1

) if 1 ≤ r = C (w) ≤ k

C (w)
N otherwise

Linear interpolation, book version (combining uni-, bi-, and trigrams):

PLI (wn | wn−2wn−1) = λ1 · P(wn | wn−2wn−1) + λ2 · P(wn | wn−1) + λ3 · P(wn)

Simplest example (combining unigram MLE and constant):

PLI (w) = λ · PMLE (w) + (1− λ)
1

v

General form (any k language models):

PLI (w) =
k∑

j=1

λjPj(w)

