Axiom. Linguistic phenomena tend to follow Zipf's law.

Lemma. Good-Turing adjusted counts are pretty good.

Proof. General consensus of language researchers after decades of use. \Box

Theorem. Laplace adjusted counts are bad.

Proof. (After Gale and Church, 1994.) Suppose Laplace adjusted counts were good. Then, by the Lemma and the transitivity of goodness, they would be similar to GT adjusted counts, that is,

$$\frac{(r+1)\cdot N}{N+V}\approx\frac{(r+1)\cdot n_{r+1}}{n_r}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Let $\rho = \frac{N}{N+V}$. Then

$$n_1 = \rho \cdot n_0$$

$$n_2 = \rho \cdot n_1 = \rho^2 \cdot n_0$$

$$n_r = \rho^r \cdot n_0$$

$$\log n_r = \log(\rho^r \cdot n_0)$$

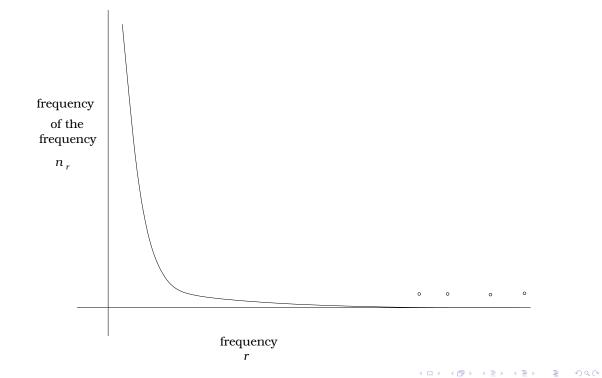
$$= \log \rho^r + \log n_0$$

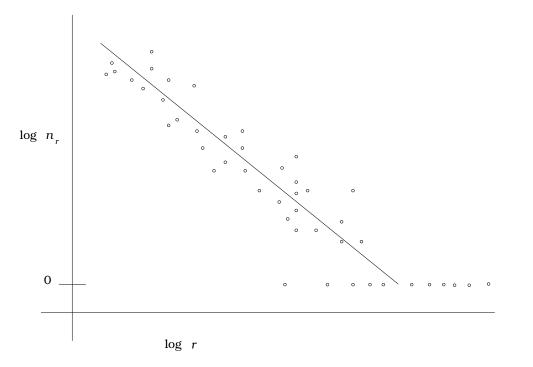
$$= r \cdot \log \rho + \log n_0$$

But Zipf's law $(r \cdot f = c)$ predicts

$$r \cdot n_r = c$$
 for some c
 $\log(r \cdot n_r) = \log c = d$ for some d
 $\log r + \log n_r = d$
 $\log n_r = d - \log r$

Thus Laplace smoothing assumes $\log n_r$ is linearly related to r (n_r and r makea a straight line on a semi-log graph), but Zipf's law predicts that $\log n_r$ is linearly related to $\log r$ (n_r and r make a straight line on a log-log graph). Hence Laplace smoothing is not good. At least, it is not Good-Turing. \Box

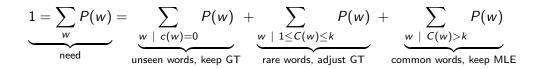




 Katz's k cut off for k = 5, intuitive but wrong version:



Katz's k cut off, constrained to make it a probability function:

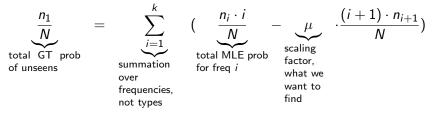


(日) (四) (里) (里)

2

Katz's k cut off, constrained to make it a probability function:

$$\sum_{w \mid c(w)=0} P_{GT}(w) = \sum_{w \mid 1 \le w \le k} (P_{MLE}(w) - P_{GTS}(w))$$



$$= \sum_{i=1}^{k} n_i \cdot \left(\frac{i}{N} - \frac{\mu \cdot (i+1) \cdot n_{i+1}}{N \cdot n_i}\right)$$
$$n_1 = \sum_{i=1}^{k} i \cdot n_i - \mu \cdot \sum_{i=1}^{k} \frac{n_i + 1}{n_i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Katz's k cut off, formlua to grab off the shelf and use:

$$P_{GT-Katz}(w) = \begin{cases} \frac{n_1}{N \cdot n_0} & \text{if } C(w) = 0\\ \frac{(r+1) \cdot \frac{n_{r+1}}{n_r} - r \cdot \frac{(k+1) \cdot n_{k+1}}{n_1}}{N \cdot \left(1 - \frac{(k+1) \cdot n_{k+1}}{n_1}\right)} & \text{if } 1 \le r = C(w) \le k\\ \frac{C(w)}{N} & \text{otherwise} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ = □

Linear interpolation, book version (combining uni-, bi-, and trigrams):

$$P_{LI}(w_n \mid w_{n-2}w_{n-1}) = \lambda_1 \cdot P(w_n \mid w_{n-2}w_{n-1}) + \lambda_2 \cdot P(w_n \mid w_{n-1}) + \lambda_3 \cdot P(w_n)$$

Simplest example (combining unigram MLE and constant):

$$P_{LI}(w) = \lambda \cdot P_{MLE}(w) + (1-\lambda)\frac{1}{v}$$

General form (any k language models):

$$P_{LI}(w) = \sum_{j=1}^k \lambda_j P_j(w)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶