Ex 7.8.8. (From last time) If $f: A \rightarrow B, g: A \rightarrow B, h: B \rightarrow C, h$ is one-to-one, and $h \circ f=h \circ g$, then $f=g$.

Proof. Suppose $f: A \rightarrow B, g: A \rightarrow B, h: B \rightarrow C, h$ is one-to-one, and $h \circ f=h \circ g$.
Suppose $a \in A$. Then

$$
\begin{aligned}
h(f(a)) & =h \circ f(a) \quad \text { by definition of function composition } \\
& =h \circ g(a) \quad \text { by definition of function equality, since } h \circ f=h \circ g \\
& =h(g(a)) \quad \text { by definition of function composition }
\end{aligned}
$$

Since $h(f(a))=h(g(a))$, we then have that $f(a)=g(a)$ by definition of one-to-one (because h is one-to-one). Therefore, by definition of function equality, $f=g$.

Not a function

Not a function

A function but not one-to-one or onto

One-to-one correspondence

Onto, not one-to-one

One-to-one, not onto

Onto, not one-to-one $|X| \geq|Y|$

One-to-one, not onto $|X| \leq|Y|$

One-to-one correspondence $|X|=|Y|$
$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

$|A \cup B|=\mid\left\{a_{1}, a_{2}, a_{3}, x, b_{1}, b_{2}\right\}=6$

$$
\begin{gathered}
|A|+|B|= \\
=\left|\left\{a_{1}, a_{2}, a_{3}, x\right\}\right|+\left|\left\{x, b_{1}, b_{2}\right\}\right| \\
=4+3=7
\end{gathered}
$$

$|A \cup B|=\mid\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}\right\}=5$

$$
\begin{gathered}
|A|+|B|= \\
=\left|\left\{a_{1}, a_{2}, a_{3}\right\}\right|+\left|\left\{b_{1}, b_{2}\right\}\right| \\
=3+2=5
\end{gathered}
$$

$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

i	f
1	Zed
2	Yelemis
3	Xavier

i	g
1	Wilhelmina
2	Valerie
3	Ursula
4	Tassie

i	h				
1	$f(1)$	$=$	Zed		
2	$f(2)$	$=$	Yelemis		
3	$f(3)$	$=$	Xavier		
4	$g(4-3)$	$=$	$g(1)$	$=$	Wilhelmina
5	$g(5-3)$	$=$	$g(2)$	$=$	Valerie
6	$g(6-3)$	$=$	$g(3)$	$=$	Ursula
7	$g(7-3)$	$=$	$g(4)$	$=$	Tassie

$A \cap B=\emptyset \quad \rightarrow \quad|A \cup B|=|A|+|B|$

$f: A \rightarrow B$ is one-to-one $\rightarrow|A| \leq|B|$

$f: A \rightarrow B$ is one-to-one $\rightarrow|A| \leq|B|$

