
Ex 7.8.8. (From last time) If f : A→ B, g : A→ B, h : B → C , h is one-to-one, and
h ◦ f = h ◦ g , then f = g .

Proof. Suppose f : A → B, g : A → B, h : B → C, h is one-to-one, and
h ◦ f = h ◦ g.
Suppose a ∈ A. Then

h(f (a)) = h ◦ f (a) by definition of function composition
= h ◦ g(a) by definition of function equality, since h ◦ f = h ◦ g
= h(g(a)) by definition of function composition

Since h(f (a)) = h(g(a)), we then have that f (a) = g(a) by definition of one-
to-one (because h is one-to-one). Therefore, by definition of function equality,
f = g. �
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A ∩ B = ∅ → |A ∪ B | = |A|+ |B |
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|A ∪ B| = |{a1, a2, a3, x , b1, b2} = 6 |A ∪ B| = |{a1, a2, a3, b1, b2} = 5

|A|+ |B| = |A|+ |B| =
= |{a1, a2, a3, x}|+ |{x , b1, b2}| = |{a1, a2, a3}|+ |{b1, b2}|

= 4 + 3 = 7 = 3 + 2 = 5



A ∩ B = ∅ → |A ∪ B | = |A|+ |B |
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A ∩ B = ∅ → |A ∪ B | = |A|+ |B |

i f i g
1 Zed 1 Wilhelmina
2 Yelemis 2 Valerie
3 Xavier 3 Ursula

4 Tassie

i h
1 f (1) = Zed
2 f (2) = Yelemis
3 f (3) = Xavier
4 g(4− 3) = g(1) = Wilhelmina
5 g(5− 3) = g(2) = Valerie
6 g(6− 3) = g(3) = Ursula
7 g(7− 3) = g(4) = Tassie



A ∩ B = ∅ → |A ∪ B | = |A|+ |B |
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f : A→ B is one-to-one → |A| ≤ |B |
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f : A→ B is one-to-one → |A| ≤ |B |
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{1, 2, . . . , i + k} = {1, 2, 3, 4, 5}

{1, 2, . . . , i} = {1, 2, 3}

a1

a2

a3 b5

b2

b4

b1

b3

{1, 2, . . . , j} = {1, 2, 3, 4, 5}BA = G({1, 2, 3})

F ◦ G({1, 2, 3}) H−1 ◦ F ◦ G({1, 2, 3})
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{1, 2, . . . , k} = {1, 2}

{1, 2, 3, 4, 5} − H−1 ◦ F ◦ G({1, 2, 3})


