For Exercise 4.10.3, name the function pow. For Exercise 4.10.4, name the function mul.
4.10.6 Let the base-b floor logarithm (flog) of x be the greatest integer less than $\log _{b} x$. Define the base-b remainder logarithm (rlog) of x to be the difference between x and b raised to the floor \log of x. For examples,

$$
\begin{aligned}
& \\
& \text { floor log } \quad \text { remainder log } \\
17 & =16+1 \\
& =2^{4}+1 \quad \log _{2} 17=4 \quad \operatorname{rlog}_{2} 17=1 \\
30 & =27+3 \\
& =3^{3}+3 \quad \operatorname{flog}_{3} 30=3 \quad \operatorname{rlog}_{3} 30=3 \\
68 & =64+4 \\
& =4^{3}+4 \quad \log _{4} 68=3 \quad \operatorname{rog}_{4} 68=4
\end{aligned}
$$

Lemma 1 For all $a, b \in \mathbb{N}$, there exists unique $n, r \in \mathbb{W}$ such that $a=b^{n}+r$ and $0 \leq r<(b-1) \cdot b^{n}$.

Lemma 2 For all $b, n, r \in \mathbb{W}, b^{n}+r=b^{n+1}+r-(b-1) \cdot b^{n}$.
Using these lemmas, write an ML function frlog that takes two integers (a and b) and returns $\log _{b} a$ and $\operatorname{rog}_{b} a$ as a tuple.

