For Exercise 4.10.3, name the function pow. For Exercise 4.10.4, name the function mul.

4.10.6 Let the base-b floor logarithm (flog) of x be the greatest integer less than $log_b x$. Define the base-b remainder logarithm (rlog) of x to be the difference between x and b raised to the floor log of x. For examples,

$$\begin{array}{llll} & & & & & & & & & \\ 17 & = & 16+1 & & & & & \\ & = & 2^4+1 & & & & & \\ 30 & = & 27+3 & & & & \\ & = & 3^3+3 & & & & \\ 68 & = & 64+4 & & & \\ & = & 4^3+4 & & & & \\ \end{array}$$

Lemma 1 For all $a, b \in \mathbb{N}$, there exists unique $n, r \in \mathbb{W}$ such that $a = b^n + r$ and $0 \le r < (b-1) \cdot b^n$.

Lemma 2 For all
$$b, n, r \in \mathbb{W}$$
, $b^n + r = b^{n+1} + r - (b-1) \cdot b^n$.

Using these lemmas, write an ML function frlog that takes two integers (a and b) and returns $flog_b a$ and $rlog_b a$ as a tuple.