A relation f from X to Y is a function（written $f: X \rightarrow Y$ ）if $\forall x \in X$ ， （1）$\exists y \in Y \mid(x, y) \in f$ ，and（2）$\forall y_{1}, y_{2} \in Y,\left(x, y_{1}\right),\left(x, y_{2}\right) \in f \rightarrow y_{1}=y_{2}$ ．

Not a function．
（There＇s a domain element that is related to two things．）

Not a function．
（There＇s a domain element that is not related to anything．）

A function．
（It＇s OK that two domain elements are related to the same thing and one codomain element has nothing related to it．）

Image

$F(A)=\{y \in Y \mid \exists x \in A$ such that $f(x)=y\}$

$$
F^{-1}(B)=\{x \in X \mid f(x) \in B\}
$$

Lemma 7.2. If $f: X \rightarrow Y$, then $F(\emptyset)=\emptyset$.

Lemma 7.3. If $f: X \rightarrow Y, A \subseteq X$, and $A \neq \emptyset$, then $F(A) \neq \emptyset$.

Lemma 7.4. If $f: X \rightarrow Y$, then $F^{-1}(\emptyset)=\emptyset$.

We might expect the following, but it's not true:
Lemma XXXX. If $f: X \rightarrow Y, A \subseteq Y$, and $A \neq \emptyset$, then $F^{-1}(A) \neq \emptyset$.

