

Not a function. (There's a domain element that is related to two things.)

Not a function. (There's a domain element that is not related to anything.)

Onto (Surjection)

Everything in the codomain is hit.

$$f: X \to Y$$
 is onto if $\forall y \in Y$,
 $\exists x \in X \mid f(x) = y$.

Analytic use:

f is onto.

$$y \in Y$$
.

Hence
$$\exists x \in X$$
 such that $f(x) = y$.

Synthetic use:

Suppose $y \in Y$.

:

(Somehow find x such that f(x) = y.) Therefore f is onto

One-to-one (Injection)

Domain elements don't share.

$$f$$
 is one-to-one if $\forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Analytic use:

f is one-to-one. $f(x_1) = f(x_2)$. Hence $x_1 = x_2$.

Synthetic use:

Suppose $x_1, x_2 \in X$ and $f(x_1) = f(x_2)$. : (Somehow show $x_1 = x_2$.) Therefore f is onto.

Onto $(\mathsf{not} \; \mathsf{one}\mathsf{-to}\mathsf{-one}) \\ |X| \geq |Y|$

(not onto) $|X| \le |Y|$

Both onto and one-to-one

$$|X| = |Y|$$