1. Write a function leastSigDigs that takes a list of ints and returns a list of the least significant digits in those lists. For example, leastSigDigs([283, 7234, 5, 2380]) would return [3, 4, 5, 0].
```
fun leastSigDigs([]) = []
    | leastSigDigs(x::rest) = (x mod 10)::leastSigDigs(rest);
```

2. Write a function hasEmpty that takes a list of lists (of any type) and determines whether or not the list of lists contains an empty list. For example, hasEmpty ([[1, 2, 3], [4,5], [], [6,7]]) would return true.
```
fun hasEmpty([]) = false
```

| hasEmpty([]::rest) = true
| hasEmpty(x::rest) = hasEmpty(rest);
3. Use quantified syllogisms (and, possible, common syllogisms and logical equivalences) to verify the following argument form. (Note that $x \notin A$ is the same thing as $\sim(x \in A)$.) (11 points.)
a. $\forall x \in A, P(x) \vee Q(x)$
b. $\forall x \in A, P(x) \rightarrow R(x)$
c. $\forall x \in A, Q(x) \rightarrow x \in B$
d. $\forall x \in B, x \notin A \vee R(x)$
e. $\therefore \forall x \in A, R(x)$

Suppose $a \in A$
(i) $\quad P(a) \vee Q(a) \quad$ By supposition, (a), and UI

Suppose $P(a)$
$R(a) \quad$ By supposition, (b), and UMP
Suppose $Q(a)$
(iii) $\quad x \in B \quad$ By supposition, (c), and UMP
(iv) $\quad R(a) \quad$ By supposition, (iii), and elimination
(v) $\quad R(a) \quad$ By (ii), (iv), supposition, and HDC
(vi) $\therefore \forall x \in A, R(x)$

