1. Write a function leastSigDigs that takes a list of ints and returns a list of the least significant digits in those lists. For example, leastSigDigs([283, 7234, 5, 2380]) would return [3, 4, 5, 0].

2. Write a function hasEmpty that takes a list of lists (of any type) and determines whether or not the list of lists contains an empty list. For example, hasEmpty([[1,2,3], [4,5], [], [6,7]]) would return true.

3. Use quantified syllogisms (and, possible, common syllogisms and logical equivalences) to verify the following argument form. (Note that $x \notin A$ is the same thing as $\sim (x \in A)$.) (11 points.)

a.
$$\forall x \in A, P(x) \lor Q(x)$$

b. $\forall x \in A, P(x) \to R(x)$
c. $\forall x \in A, Q(x) \to x \in B$
d. $\forall x \in B, x \notin A \lor R(x)$
e. $\therefore \forall x \in A, R(x)$

	Suppose $a \in A$	
(i)	$P(a) \lor Q(a)$	By supposition, (a), and UI
	Suppose $P(a)$	
(ii)	R(a)	By supposition, (b), and UMP
	Suppose $Q(a)$	
(iii)	$x \in B$	By supposition, (c), and UMP
(iv)	R(a)	By supposition, (iii), and elimination
(v)	R(a)	By (ii), (iv), supposition, and HDC
(vi)	$\therefore \forall \ x \in A, R(x)$	