
Operators x + y
−x

p ∨ q
∼ p

A ∪ B
A

Distribution x · (y + z)
= x · y + x · z

p ∧ (q ∨ r)
≡ (p ∧ q) ∨ (p ∧ r)

A ∩ (B ∪ C )
= (A ∩ B) ∪ (A ∩ C )

Identity x + 0 = x
x · 1 = x

p ∨ T ≡ p
p ∧ F ≡ p

A ∪ ∅ = A
A ∩ U = A



A relation from one
set to another

R set of pairs subset of X × Y
R ⊆ X × Y

isEnrolledIn, isTaughtBy

A relation on a set R set of pairs subset of X × X
R ⊆ X × X

eats, divides

The image of an
element under a
relation

IR(a) set set of things that a is related to
IR(a) = {b ∈ Y | (a, b) ∈ R}

classes Bob is enrolled in,
numbers that 4 divides

The image of a set
under a relation

IR(A) set set of things that things in A are related to
IR(A) = {b ∈ Y | ∃ a ∈ A | (a, b) ∈ R}

classes Bob, Larry, or
Alice are taking, numbers
that 2, 3, or 5 divide

The inverse of a
relation

R−1 relation the arrows/pairs of R reversed
R−1 = {(b, a) ∈ Y × X | (a, b) ∈ R}

hasOnRoster, teaches,
isEatenBy, isDivisibleBy

The composition of
two relations

S ◦ R relation two hops combined to one hop
(Assume S ⊆ Y × Z )
S ◦ R = {(a, c) ∈ X × Z | ∃ b ∈ Y

| (a, b) ∈ R ∧ (b, c) ∈ S}

hasAsProfessor,
eatsSomethingThatEats

The identity relation
on a set

iX relation everything is related only to itself
iX = {(x , x) | x ∈ X}

=



Reflexivity Symmetry Transitivity

Informal Everything is related to itself All pairs are mutual Anything reachable by two hops is
reachable by one hop

Formal ∀ x ∈ X , (x , x) ∈ R ∀ x , y ∈ X , (x , y) ∈ R →
(y , x) ∈ R
OR
∀(x , y) ∈ R, (y , x) ∈ R

∀x , y , z ∈ X ,
(x , y), (y , z) ∈ R → (x , z) ∈ R
OR
∀(x , y), (y , z) ∈ R, (x , z) ∈ R

Visual

Examples ⊆, ≤, ≥, ≡, i , isAquaintedWith,
waterVerticallyAligned

≡, isOppositeOf,
isOnSameRiver,
isAquaintedWith

<, ≤, >, ≥, ⊆, isTallerThan,
isAncestorOf, isWestOf



{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)}

{
↓

(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)}

{(1, 2),
↓

(2, 3), (5, 2), (1, 5), (2, 5), (1, 3) }

{(1, 2), (2, 3),
↓

(5, 2), (1, 5), (2, 5), (1, 3) }



Domain First relation Second relation
Rivers flows into is tributary to

The Platte flows into the Mis-
souri, and the Missouri flows into
the Mississippi.

The Platte is a tributary to the
Missouri; both the Platte and
the Missouri are tributaries to the
Mississippi.

People is parent of is ancestor of
Bill is Jane’s parent; Jane is
Leroy’s parent

Bill is Jane’s ancestor; Leroy has
both Jane and Bill as ancestors.



Domain First relation Second relation
Animals eats derives nutrients from

Rabbit eats clover; coyote eats
rabbit.

Coyote derives nutrients from
rabbit; rabbit derives nutrients
from clover; both coyote and
rabbit ultimately derive nutrients
from clover.

Z is one less than <
2 is one less than 3; 3 is one less
than 4

2 < 3; 3 < 4; 2 < 4.
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Theorem 5.12 The transitive closure of a relation R is unique.

Proof. Suppose S and T are relations fulfilling the requirements for being
transitive closures of R. By items 1 and 2, S is transitive and R ⊆ S, so by
item 3, T ⊆ S. By items 1 and 2, T is transitive and R ⊆ T, so by item 3,
S ⊆ T. Therefore S = T by the definition of set equality. �



Theorem 5.13 If R is a relation on a set A, then

R∞ =
∞⋃
i=1

R i = {(x , y) | ∃ i ∈ N such that (x , y) ∈ R i}

is the transitive closure of R.

Proof. Suppose R is a relation on a set A.
Suppose a, b, c ∈ A, (a, b), (b, c) ∈ R∞. By the definition of R∞, there exist
i , j ∈ N such that (a, b) ∈ R i and (b, c) ∈ R j . By the definition of relation
composition and Exercise 5.7.4, (a, c) ∈ R j ◦ R i = R i+j . R i+j ⊆ R∞ by the
definition of R∞. By the definition of subset, (a, c) ∈ R∞. Hence, R∞ is
transitive by definition.
Suppose a, b ∈ A and (a, b) ∈ R. By the definition of R∞ (taking i = 1),
(a, b) ∈ R∞, and so R ⊆ R∞, by definition of subset.
Suppose S is a transitive relation on A and R ⊆ S. Further suppose (a, b) ∈
R∞. Then, by definition of R∞, there exists i ∈ N such that (a, b) ∈ R i . By
Lemma 5.14, (a, b) ∈ S. Hence R∞ ⊆ S by definition of subset.
Therefore, R∞ is the transitive closure of R. �


