
Problem 30-1 is to be done in the spirit of “complete” problems, but with specific requirements.
Here is a reworking of the problem.

Find Python starter code in ~tvandrun/cs445/c39p1p (as always, you have the option of writing
code from scratch instead). The interesting stuff is in the file c30p1/polynomial.py. This code has
many similarities to the code examples we had in class, but one important difference: It doesn’t have
any classes to represent polynomials, but instead we just use lists of coefficients. Thus all operations
are stand-alone functions, not methods of classes.

a. The book refers to two polynomials ax + b and cx + d, but I suggest you think of them instead
as a0 + a1x and b0 + b1x, to use a notation that can be scaled up consistently in part b. For the
equation

(a0 + a1x) · (b0 + b1x) = c0 + c1x+ c2x
2

find forms for c0, c1, and c2 that require only three distinct multiplications. (You can use the
same multiplication more than once, that is, the result of a multiplication can be stored and
reused.) The hint the book gives is that one of the multiplications is (a0 + a1) · (b0 + b1). (Don’t
overthink this—it’s not that hard, especially with the hint. This part sets you up for a slightly
harder but analogous algebraic task in part b.)

Then use this idea to implement the function polyn_product_linear(), which you can test using
test_ppl.py. You are not required to add more testcases to that one.

b. The problem in the book refers to two algorithms, so we’ll take it as if it were two parts, 30-1.b.i
and 30-1.b.ii. In either case the task is multiplying two polynomials,
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Assume n is a power of 2.

For part b.i, you are asked to think of the problem this way:
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Where α and xnβ correspond to F and L in FOIL, and x
n
2 δ corresponds to O + I. Moreover, α

and β are two of the three (recursive) polynomial multiplications you are allowed, and you need
to find a third polynomial multiplication (call its result γ) such that δ = γ − α− β.

Finding γ algebraically counts for the proof part of this problem. Implement this by finishing
the function polyn_product_dchlr() (that’s polynomial product divide-and-conquer high-low re-
cursive). Test this using test_ppdchl.py. This inherits testcases from test_polyn_prod.py,
which is set up so that it is easy for you to add testcases which will be used both here and in
part b.ii.

Finally, show that this is Θ(nlg 3) by finding and solving a recurrence. Don’t worry about the
time spent generating or manipulating lists; consider only arithmetic operations.

Part b.ii is similar and should be done similarly, but this time think of the problem as
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As before, find a polynomial product (call its result γ) such that δ = γ − α− β.

Implement this by finishing the function polyn_product_dceor() (polynomial product divide-
and-conquer even-odd recursive). You may find it useful to represent a polynomial as a function
of x2 instead of x. For example [2,3,7] interpreted as a function of x2 means 2 + 3x2 + 7x4. To
convert this back to a function of x, add a zero after every entry, ie make the list [2,0,3,0,7,0].
The provided function perforate() does this. Test using test_ppdceo.py. You shouldn’t need
any new testcases, since the testcases you wrote in test_polyn_prod.py will be inherited. The
analysis should be similar.

c. The last part of the problem (top of page 921) can be answered with a short verbal explanation.
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