Loop invariant: $A[j]$ is the smallest element in the subarray $A[j \ldots n]$. Formally,
(a) $\forall k,[j, n], A[j] \leq A[k]$
(b) $n-j$ is the number of iterations completed

Initialization. Before the loop starts, $j=n$ so (a) is trivial and $j-n=0$ implies (b).
Maintenance. Suppose the invariant holds at the beginning of an iteration. Let $j_{\text {old }}$ be the value of j before an iteration. Our supposition is, then, that $\forall k, j \leq k \leq n, A\left[j_{o l d}\right] \leq A[k]$ and $n-j_{\text {old }}$ is the number of iterations completed.

Either $A\left[j_{\text {old }}-1\right] \leq A\left[j_{\text {old }}\right]$ or $A\left[j_{\text {old }}-1\right]>A\left[j_{\text {old }}\right]$.
Suppose $A\left[j_{\text {old }}-1\right]>A\left[j_{\text {old }}\right]$. Then by line 4, the values in positions $j_{\text {old }}-1$ and $j_{\text {old }}$ are swapped. Let A^{\prime} be the new state of the array. Then $A^{\prime}\left[j_{\text {old }}-1\right]<A\left[j_{\text {old }}\right]$ and hence $\forall k \in\left[j_{\text {old }}-1\right], A\left[j_{\text {old }}-1\right] \leq A[k]$.
(continued...) On the other hand, suppose $A\left[j_{\text {old }}-1\right] \leq A\left[j_{o l d}\right]$. Then no change is made to the array, so $A^{\prime}=A$. Moreover, $\forall k \in\left[j_{\text {old }}-1\right], A\left[j_{\text {old }}-1\right] \leq$ $A[k]$.
Let $j_{\text {new }}$ be j at the end of the iteration. Then $j_{\text {new }}=j_{\text {old }}-1$, and $n-j_{\text {old }}+1=$ $n-j_{\text {new }}$ is the number of iterations completed, satisfying (b). In either case above, $\forall k \in\left[j_{\text {old }}-1\right], A\left[j_{\text {old }}-1\right] \leq A[k]$, which satisfies (a).

Termination. After $n-i$ iterations, by (b) $n-j=n-i$, and so $j=i<i+1$. Hence the loop terminates.

By (a), at termination $\forall k,[i, n], A[i] \leq A[k]$, that is, the value $A[i]$ is the smallest value in A in the range $[i, n]$.

Loop invariant: The subarray $A[1, i)$ is sorted and less than everything in subarray $A[i, n]$. Formally:
(a) $\forall k \in[1, i), \forall \ell \in[i, n], A[k] \leq A[\ell]$
(b) $i-1$ is the number of iterations completed.
(Note (a) also implies $\forall k \in(1, i), A[k-1] \leq A[k]$.)
Initialization. Before the loop starts, $i=1$ which implies (b). Since the range $[1, i)$ is empty, (a) is trivial.
Maintenance. Let $i_{\text {old }}$ and $i_{\text {new }}$ be the values of i before and after the iteration in question. Note that $i_{\text {new }}=i_{\text {old }}+1$ Suppose that that the invariant holds before the iteration, that is $i-1$ iterations have been completed and

$$
\forall k \in\left[1, i_{o l d}\right), \forall \ell \in\left[i_{o l d}, n\right], A[k] \leq A[\ell]
$$

At the end of the running of the inner loop, $j=i_{\text {old }}+1$, that is, $j=i_{\text {new }}$. By the loop invariant we proved in part a,

$$
\forall k \in\left[i_{\text {new }}, n\right], A\left[i_{n e w}\right] \leq A[k]
$$

Since all the positions less than $i_{\text {new }}$ weren't changed, then this together with our inductive hypothesis tells us that

$$
\forall k,\left[1, i_{\text {new }}\right), \forall \ell \in\left[i_{\text {new }}, n\right], A[k] \leq A[\ell]
$$

Moreover, since $A\left[i_{\text {new }}-1\right]$ is greater than everything in positions less than $i_{\text {new }}-1$, we have

$$
\forall k \in\left(1, i_{o l d}\right), A[k-1] \leq A[k]
$$

Termination. After $n-1$ iterations, $i-1=n-1$ by (b), and so $i=n$. Hence the loop terminates
Moreover, (a) implies that the entire array $A[1 \ldots n]$ is sorted.

