
Examples from class
September 4, 2018

Ex 2.3-3. We prove that when n is an exact power of 2, then the solution to the recurrence

T (n) =

{
2 if n = 2
2T (n

2 ) + n if n = 2k, for k > 2

Proof. By induction on k

Suppose k = 1, and so n = 2. Then T (n) = 2 = 2 · 1 = 2 · lg 2.

Next, suppose that for some k ≥ 1 and n = 2k, T (n) = n lg n. Then

T (2n) = 2T ( 2n
2 ) + 2n

= 2T (n) + 2n

= 2n lg n + 2n

= 2n(lg n + 1)

= 2n lg 2n. �

2.3-7 (complete). Code solution:

# Find a pair in a set that sums to a given number, if any.

# s - the sequence we're searching

# x - the sum we want to find two addends of

# returns a tuple with the values in the set that sums to x

def findPairSum(s, x):

s.sort()

# i and j are the inclusive endpoints of the range we're searching

i = 0

j = len(s) - 1

while i <= j and s[i] + s[j] != x :

if s[i] + s[j] < x :

i += 1

else :

assert s[i] + s[j] > x

j -= 1

if i <= j :

return (s[i], s[j])

else :

return None

Invariant (Loop of findPairSum). After k ∈W iterations,

(a) ∀ a ∈ [0, i), s[a] + s[j] < x

(b) ∀ b ∈ (j, n), s[i] + s[b] > x

(c) j − i = n− k − 1

Correctness Claim (findPairSum). The method findPairSum returns two values in the given
sequence that sum to x, if any exist.
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Proof. By induction on k, the number of iterations.

Initialization. Suppose k = 0 (before the loop starts). i = 0 and j = n − 1. The
two ranges [0, i) and (j, n) are empty, and so clauses (a) and (b) are vacuously true.
Moreover, j − i = n− 1− 0 = n− 0− 1 = n− k − 1.

Maintenance. Suppose the invariant is true after k iterations, for some k ≥ 0. Suppose
a k+1st iteration occurs. By the guard (which must have been true), either S[i]+S[j] < x
or S[i] + S[j] > x.

Suppose S[i] + S[j] < x. By the inductive hypothesis, for all a ∈ [0, i), S[a] + S[j] < x.
Hence for all a ∈ [0, i + 1), S[a] + S[j] < x. The invariant is maintained after i is
incremented.

The situation is similar if S[i] + S[j] > x.

Additionally, either i is incremented or j is decremented. In either case jnew − inew =
(jold − iold)− 1 = n− k − 1− 1 = n− (k + 1)− 1.

Hence the invariant holds after k + 1 iterations.

Termination. After n iterations, j − i = −1 so i > j. Hence the loop will terminate
after at most n iterations.

After the loop terminates, either i > j or S[i] + S[j] = x.

Suppose i > j. Then, by the loop invariant, no elements exist that sum to x, and the
algorithm correctly returns None.

On the other hand, suppose S[i] + S[j] = x. Then the algorithm correctly returns S[i]
and S[j]. �

For the analysis, here’ s the code reproduce with anotations.

def findPairSum(s, x):

s.sort() # c0 + c1n + c2n lg n

i = 0

j = len(s) - 1

while i <= j and s[i] + s[j] != x : #c3(n + 1)
if s[i] + s[j] < x : #c4n

i += 1

else :

assert s[i] + s[j] > x

j -= 1

if i <= j : #c5
return (s[i], s[j])

else :

return None

Renaming constants, the worst-case running time is in the form

T (n) = d0 + d1n + d2n lg n

Which is Θ(n lg n).
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2-3.c. Be careful. What is the induction variable? Not i. Look at the proposed invariant again.
The induction variable is actually the number of iterations which is n− i. That will make the math
a little messier.

Proof. By induction on the number of iterations.

Init. After 0 iterations, y = 0, i = n by assignment. So

n−(i+1)∑
k=0

ak+i+1 =

−1∑
k=0

ak+i+1x
k = 0 = y

Maint. Now, suppose this holds true after N iterations, that is

yold =

n−(iold+1)∑
k=0

ak+iold+1x
k

where yold and iold are y and i after N iterations. Likewise, let ynew and inew be the
values after N + 1 iterations.

By assignment inew = iold − 1. Then

ynew = aiold + x · yold by assignment

= aiold + x ·
∑n−(iold+1)

k=0 ak+iold+1x
k

= ainew−1 + x ·
∑n−(inew+2)

k=0 ak+inewx
k by substitution

= ainew−1 +
∑n−(inew+2)

k=0 ak+inewx
k+1 by distribution

= ainew−1 +
∑n−(inew+1)

k=1 ak+inew+1x
k by change of variables

= a0+inew−1x
0 +

∑n−(inew+1)
k=1 ak+inew+1x

k

=
∑n−(inew+1)

k=0 ak+inew+1x
k �
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