Examples from class
September 4, 2018

Ex 2.3-3. We prove that when n is an exact power of 2, then the solution to the recurrence

Ty = { 2 if n =2
= 21(%)+n if n=2% for k> 2

Proof. By induction on &
Suppose k =1,and son =2. Then T(n) =2=2-1=2-1g2.
Next, suppose that for some k > 1 and n = 2%, T((n) = nlgn. Then

T(2n) 2T(22) + 2n

= 2T(n)+2n
= 2nlgn+2n
= 2n(lgn+1)
= 2nlg2n. O

2.3-7 (complete). Code solution:

# Find a pair in a set that sums to a given number, if any.
# s - the sequence we're searching

# x - the sum we want to find two addends of

# returns a tuple with the values in the set that sums to x
def findPairSum(s, x):

s.sort()
# 1 and jJ are the inclusive endpoints of the range we're searching
i=0
j = len(s) - 1
while i <= j and s[i] + s[j] != x :
if s[i] + s[j] < x :
i+=1
else :
assert s[i] + s[j] > x
j =1
if i <= j
return (s[i], s[jl)
else :

return None
Invariant (Loop of findPairSum). After k € W iterations,
(a) ¥V a €10,1),s[a] + s[j] < z
(b) ¥V be(j4,n),s[i| +sb] >z
(c)j—i=n—k-1

Correctness Claim (findPairSum). The method findPairSum returns two values in the given
sequence that sum to x, if any exist.



Proof. By induction on k, the number of iterations.

Initialization. Suppose k = 0 (before the loop starts). ¢ = 0 and j = n — 1. The
two ranges [0,¢) and (j,n) are empty, and so clauses (a) and (b) are vacuously true.
Moreover, j —i=n—1-0=n—-0—-1=n—Fk— 1.

Maintenance. Suppose the invariant is true after k iterations, for some k > 0. Suppose
a k+1st iteration occurs. By the guard (which must have been true), either S[i|+S[j] <
or S[i] + S[j] > =.

Suppose S[i] + S[j] < z. By the inductive hypothesis, for all a € [0,%), S[a] + S[j] < z.
Hence for all a € [0,i + 1), S[a] + S[j] < z. The invariant is maintained after ¢ is
incremented.

The situation is similar if S[i] + S[j] > =.

Additionally, either 4 is incremented or j is decremented. In either case jpew — inew =
(Jold — o) —1l=n—-k—-1—-1=n—-(k+1)—1.

Hence the invariant holds after k + 1 iterations.

Termination. After n iterations, j —i = —1 so ¢ > j. Hence the loop will terminate
after at most n iterations.

After the loop terminates, either i > j or S[i] + S[j] = =.

Suppose ¢ > j. Then, by the loop invariant, no elements exist that sum to z, and the
algorithm correctly returns None.

On the other hand, suppose S[i] + S[j] = z. Then the algorithm correctly returns S|i]
and S[j]. O

For the analysis, here’ s the code reproduce with anotations.

def findPairSum(s, x):

s.sort() # co+cin+conlgn
i=0
j = len(s) - 1
while i <= j and s[i] + s[j] !'= x : #c3(n+1)
if s[i] + s[j] < x : #eam
i+=1
else :
assert s[i] + s[j] > x
j-=1
if i <=3 : #cs
return (s[i], s[jl)
else :

return None
Renaming constants, the worst-case running time is in the form
T(n) =do+ din+donlgn

Which is ©(nlgn).



2-3.c. Be careful. What is the induction variable? Not ¢. Look at the proposed invariant again.
The induction variable is actually the number of iterations which is n — 7. That will make the math
a little messier.

Proof. By induction on the number of iterations.

Init. After O iterations, y = 0, ¢ = n by assignment. So

n—(i+1) -1
_ k_o=
Qk+i+1 = Ag4i+18 =U=1Y
k=0 k=0

Maint. Now, suppose this holds true after N iterations, that is

n—(ig1q+1)
Yod = D Gryigg 1zt
k=0
where yo1q and ioq are y and ¢ after N iterations. Likewise, let Ynew and ipew be the
values after NV + 1 iterations.

By assignment ipew = %01 — 1. Then

Ynew = Qi T T Yold by assignment
n—(iglq+1) k
= Qigg T T2 k0" Ghitigg+1®T
— (4 2 . .
= Qipew—1 T - Z:(()mew+ ) Aot inon TF by substitution
— (2 2 . . .
= Qipew—1 T+ Zzzémew ) A tinow T by distribution
_ n—(inew+1) k .
= Gipew—1+ D p—q Ak tinew—+1T by change of variables
_ 0 n—(inew+1) k
= Q0tinew—17" + D py Uk tinew+17
_ n—(inew+1) k
- k=0 Ak+inew+1T t



