Examples from class September 4, 2018

Ex 2.3-3. We prove that when n is an exact power of 2, then the solution to the recurrence

$$T(n) = \begin{cases} 2 & \text{if } n = 2\\ 2T(\frac{n}{2}) + n & \text{if } n = 2^k, \text{ for } k > 2 \end{cases}$$

Proof. By induction on k

Suppose k = 1, and so n = 2. Then $T(n) = 2 = 2 \cdot 1 = 2 \cdot \lg 2$. Next, suppose that for some $k \ge 1$ and $n = 2^k$, $T(n) = n \lg n$. Then

```
T(2n) = 2T(\frac{2n}{2}) + 2n= 2T(n) + 2n= 2n \lg n + 2n= 2n(\lg n + 1)= 2n \lg 2n. \Box
```

2.3-7 (complete). Code solution:

```
# Find a pair in a set that sums to a given number, if any.
# s - the sequence we're searching
\# x - the sum we want to find two addends of
# returns a tuple with the values in the set that sums to x
def findPairSum(s, x):
   s.sort()
    # i and j are the inclusive endpoints of the range we're searching
    i = 0
    j = len(s) - 1
    while i \le j and s[i] + s[j] != x:
        if s[i] + s[j] < x :
            i += 1
        else :
            assert s[i] + s[j] > x
            j -= 1
    if i \leq j:
        return (s[i], s[j])
    else :
        return None
```

Invariant (Loop of findPairSum). After $k \in \mathbb{W}$ iterations,

(a) $\forall a \in [0, i), s[a] + s[j] < x$ (b) $\forall b \in (j, n), s[i] + s[b] > x$ (c) j - i = n - k - 1

Correctness Claim (findPairSum). The method findPairSum returns two values in the given sequence that sum to x, if any exist.

Proof. By induction on k, the number of iterations.

Initialization. Suppose k = 0 (before the loop starts). i = 0 and j = n - 1. The two ranges [0, i) and (j, n) are empty, and so clauses (a) and (b) are vacuously true. Moreover, j - i = n - 1 - 0 = n - 0 - 1 = n - k - 1.

Maintenance. Suppose the invariant is true after k iterations, for some $k \ge 0$. Suppose a k+1st iteration occurs. By the guard (which must have been true), either S[i]+S[j] < x or S[i]+S[j] > x.

Suppose S[i] + S[j] < x. By the inductive hypothesis, for all $a \in [0, i)$, S[a] + S[j] < x. Hence for all $a \in [0, i + 1)$, S[a] + S[j] < x. The invariant is maintained after *i* is incremented.

The situation is similar if S[i] + S[j] > x.

Additionally, either *i* is incremented or *j* is decremented. In either case $j_{\text{new}} - i_{\text{new}} = (j_{\text{old}} - i_{\text{old}}) - 1 = n - k - 1 - 1 = n - (k + 1) - 1$.

Hence the invariant holds after k + 1 iterations.

Termination. After n iterations, j - i = -1 so i > j. Hence the loop will terminate after at most n iterations.

After the loop terminates, either i > j or S[i] + S[j] = x.

Suppose i > j. Then, by the loop invariant, no elements exist that sum to x, and the algorithm correctly returns None.

On the other hand, suppose S[i] + S[j] = x. Then the algorithm correctly returns S[i] and S[j]. \Box

For the analysis, here's the code reproduce with anotations.

```
def findPairSum(s, x):
    s.sort()
                  # c_0 + c_1 n + c_2 n \lg n
    i = 0
    j = len(s) - 1
    while i <= j and s[i] + s[j] != x : \#c_3(n+1)
         if s[i] + s[j] < x :
                                 \#c_4n
             i += 1
         else :
             assert s[i] + s[j] > x
             j -= 1
    if i <= j :
                         #c<sub>5</sub>
        return (s[i], s[j])
    else :
        return None
```

Renaming constants, the worst-case running time is in the form

$$T(n) = d_0 + d_1 n + d_2 n \lg n$$

Which is $\Theta(n \lg n)$.

2-3.c. Be careful. What is the induction variable? Not *i*. Look at the proposed invariant again. The induction variable is actually the number of iterations which is n - i. That will make the math a little messier.

Proof. By induction on the number of iterations.

Init. After 0 iterations, y = 0, i = n by assignment. So

$$\sum_{k=0}^{n-(i+1)} a_{k+i+1} = \sum_{k=0}^{-1} a_{k+i+1} x^k = 0 = y$$

Maint. Now, suppose this holds true after N iterations, that is

$$y_{\text{old}} = \sum_{k=0}^{n-(i_{\text{old}}+1)} a_{k+i_{\text{old}}+1} x^k$$

where y_{old} and i_{old} are y and i after N iterations. Likewise, let y_{new} and i_{new} be the values after N + 1 iterations.

By assignment $i_{\text{new}} = i_{\text{old}} - 1$. Then

$$y_{\text{new}} = a_{i_{\text{old}}} + x \cdot y_{\text{old}}$$
by assignment

$$= a_{i_{\text{old}}} + x \cdot \sum_{k=0}^{n-(i_{\text{old}}+1)} a_{k+i_{\text{old}}+1} x^{k}$$

$$= a_{i_{\text{new}}-1} + x \cdot \sum_{k=0}^{n-(i_{\text{new}}+2)} a_{k+i_{\text{new}}} x^{k}$$
by substitution

$$= a_{i_{\text{new}}-1} + \sum_{k=0}^{n-(i_{\text{new}}+2)} a_{k+i_{\text{new}}} x^{k+1}$$
by distribution

$$= a_{i_{\text{new}}-1} + \sum_{k=1}^{n-(i_{\text{new}}+1)} a_{k+i_{\text{new}}+1} x^{k}$$
by change of variables

$$= a_{0+i_{\text{new}}-1} x^{0} + \sum_{k=1}^{n-(i_{\text{new}}+1)} a_{k+i_{\text{new}}+1} x^{k}$$
$$= \sum_{k=0}^{n-(i_{\text{new}}+1)} a_{k+i_{\text{new}}+1} x^{k}$$