Invariant (Loop of findPairSum)
After $k \in \mathbb{W}$ iterations,
(a) $\forall a \in[0, i), s[a]+s[j]<x$
(b) $\forall b \in(j, n), s[i]+s[b]>x$
(c) $j-i=n-k-1$

Correctness Claim (findPairSum)
The method findPairSum returns two values in the given sequence that sum to x, if any exist.

Invariant (Loop of findPairSum)
After $k \in \mathbb{W}$ iterations,
(a) $\forall a \in[0, i), s[a]+s[j]<x$
(b) $\forall b \in(j, n), s[i]+s[b]>x$
(c) $j-i=n-k-1$

Proof. By induction on k, the number of iterations.
Initialization. Suppose $k=0$ (before the loop starts). $i=0$ and $j=n-1$.
The two ranges $[0, i)$ and (j, n) are empty, and so clauses (a) and (b) are vacuously true. Moreover, $j-i=n-1-0=n-0-1=n-k-1$.

Invariant (Loop of findPairSum)
After $k \in \mathbb{W}$ iterations,
(a) $\forall a \in[0, i), s[a]+s[j]<x$
(b) $\forall b \in(j, n), s[i]+s[b]>x$
(c) $j-i=n-k-1$

Maintenance. Suppose the invariant is true after k iterations, for some $k \geq 0$. Suppose a $k+1$ st iteration occurs. By the guard (which must have been true), either $S[i]+S[j]<x$ or $S[i]+S[j]>x$.

Suppose $S[i]+S[j]<x$. By the inductive hypothesis, for all a $\in[0, i)$, $S[a]+S[j]<x$. Hence for all $a \in[0, i+1), S[a]+S[j]<x$. The invariant is maintained after i is incremented.

The situation is similar if $S[i]+S[j]>x$.
Additionally, either i is incremented or j is decremented. In either case $j_{n e w}-$ $i_{\text {new }}=\left(j_{\text {old }}-i_{\text {old }}\right)-1=n-k-1-1=n-(k+1)-1$.

Hence the invariant holds after $k+1$ iterations.

Invariant (Loop of findPairSum)
After $k \in \mathbb{W}$ iterations,
(a) $\forall a \in[0, i), s[a]+s[j]<x$
(b) $\forall b \in(j, n), s[i]+s[b]>x$
(c) $j-i=n-k-1$

Termination. After n iterations, $j-i=-1$ so $i>j$. Hence the loop will terminate after at most n iterations.

After the loop terminates, either $i>j$ or $S[i]+S[j]=x$.
Suppose $i>j$. Then, by the loop invariant, no elements exist that sum to x, and the algorithm correctly returns None.

On the other hand, suppose $S[i]+S[j]=x$. Then the algorithm correctly returns $S[i]$ and $S[j]$.

Proof of Horner's rule loop invariant:
Init. After 0 iterations, $y=0, i=n$ by assignment. So

$$
\sum_{k=0}^{n-(i+1)} a_{k+i+1}=\sum_{k=0}^{-1} a_{k+i+1} x^{k}=0=y
$$

Maint. Now, suppose this holds true after N iterations, that is

$$
y_{\text {old }}=\sum_{k=0}^{n-\left(i_{\text {old }}+1\right)} a_{k+i_{\text {old }}+1} x^{k}
$$

where $y_{\text {old }}$ and $i_{\text {old }}$ are y and i after N iterations. Likewise, let $y_{\text {new }}$ and $i_{\text {new }}$ be the values after $N+1$ iterations.

By assignment $i_{\text {new }}=i_{\text {old }}-1$. Then

$$
\begin{aligned}
& y_{\text {new }}=a_{i_{\text {old }}}+x \cdot y_{\text {old }} \\
& =a_{i_{\text {old }}}+x \cdot \sum_{k=0}^{n-\left(i_{\text {old }}+1\right)} a_{k+i_{\text {old }}+1} x^{k} \\
& =a_{\text {inew }}-1+x \cdot \sum_{k=0}^{n-(\text { inew }+2)} a_{k+\text { inew } x^{k}} \\
& =a_{i_{\text {new }}-1}+\sum_{k=0}^{n-(\text { inew }+2)} a_{k+i_{n e w}} x^{k+1} \quad \text { by distribution } \\
& =a_{\text {inew }-1}+\sum_{k=1}^{n-(\text { inew }+1)} a_{k+\text { inew }+1} x^{k} \quad \text { by change of variables } \\
& =a_{0+i_{\text {new }}-1} x^{0}+\sum_{k=1}^{n-(\text { inew }+1)} a_{k+i_{n e w}+1} x^{k} \\
& =\sum_{k=0}^{n-(\text { inew }+1)} a_{k+\text { inew }^{2}} x^{k} \\
& \text { by assignment } \\
& \text { by substitution } \\
& \text { by distribution } \\
& \text { by change of variables }
\end{aligned}
$$

