A. Prove $L \in \mathcal{N} \mathcal{P}$

1. Describe a certificate.
2. Demonstrate it can be used to check a string/solution in polynomial time.
3. Demonstrate that the certificate iteslef is succinct (polynomial in size)
usually easy for our problems-ok to do briefly/informally
B. Prove L is $\mathcal{N} \mathcal{P}$-hard
4. Choose a known $\mathcal{N} \mathcal{P}$-complete problem L_{2}.
5. Describe a reduction τ from L_{2} to L.
6. Demonstrate τ can be computed in polynomial time. (Also usually easy.)
7. Demonstrate that $x \in L_{2}$ iff $\tau(x) \in L$

Reducing Sat to Exact Cover:
Suppose $\left\{c_{1}, c_{2}, \ldots c_{\ell}\right\}$ is an instance of Sat.
Define the following instance of Exact Cover:

$$
\begin{gathered}
\mathcal{U}=\begin{array}{ll}
& \begin{array}{l}
\left\{x_{i}\right\} \\
\\
\\
\\
\cup
\end{array} \\
& \text { for each variable } i \\
\left\{c_{j}\right\} & \text { for each clause } j
\end{array} \\
\mathcal{F}=\begin{array}{lll}
\left\{p_{j k}\right\} & \text { for each position } k \text { in clause } j \\
& \forall j, k & \left\{p_{j k}\right\} \\
& \forall i & T_{i T}=\left\{x_{i}\right\} \cup\left\{p_{j k} \mid \lambda_{j k}=\sim x_{i}\right\} \\
& \forall i & T_{i \perp}=\left\{x_{i}\right\} \cup\left\{p_{j k} \mid \lambda_{j k}=x_{i}\right\} \\
& \forall j, k & \left\{c_{J} p_{j k}\right\}
\end{array}
\end{gathered}
$$

Proof that HamiltonPath is $\mathcal{N} \mathcal{P}$-Complete

Proof. [HamiltonPath is $\mathcal{N P}$.] Suppose $G=(V, E)$ is a graph, an instance of the HamiltonPath. Let $p=\left\langle u_{1}, u_{2}, \ldots u_{n}\right\rangle$ be a a sequence of vertices from V, a proposed Hamilton path in G. With any reasonable representation of G, one can check that each vertex in V appears uniquely in p, and that for any pair of vertices u_{i}, u_{i+1} as they appear in p, the edge $\left(u_{i}, u_{i+1}\right)$ is in E. Moreover, the path p is smaller than the representation of G, so it is succinct.
[HamiltonPath is $\mathcal{N} \mathcal{P}$-hard.] Next, suppose $G=(E, V)$ is an instance of HamiltonCycle. Let $v_{1} \in V$ be an arbitrary vertex. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a new graph such that v_{1} is removed and four new vertices are added, that is, $V^{\prime}=V-\left\{v_{1}\right\} \cup\left\{v_{a}, v_{b}, v_{c}, v_{d}\right\}$; and every edge that is incident on v_{1} is replaced with two analogous edges incident on v_{b} and v_{c}, and and edges (v_{a}, v_{b}) and $\left(v_{c}, v_{d}\right)$ are added, that is

$$
\begin{aligned}
E^{\prime}= & \left(E-\left\{\left(v_{1}, v_{x}\right) \mid\left(v_{1}, v_{x}\right) \in E\right\}\right) \\
& \cup\left\{\left(v_{b}, v_{x}\right),\left(v_{c}, v_{x}\right) \mid\left(v_{1}, v_{x}\right) \in E\right\} \\
& \cup\left\{\left(v_{a}, v_{b}\right),\left(v_{c}, v_{d}\right)\right\}
\end{aligned}
$$

This reduction reduction is accomplished by one pass over the edges, which is polynomially computable.
Now, suppose G has a Hamilton cycle, call it $\left(v_{1}, v_{2}, \ldots v_{|V|-1}, v_{1}\right)$. (As a cycle, it has an arbitrary starting/ending point, so we are free to choose v_{1} as the starting point when naming the cycle.) Then G^{\prime} has a Hamiltonian path $\left(v_{a}, v_{b}, v_{2}, \ldots, v_{|V|-1}, v_{c}, v_{d}\right)$.
Conversely, suppose G^{\prime} has a Hamiltonian path. Based on how we constructed G^{\prime} (for example, the only edge going out of v_{a} is $\left(v_{a}, v_{b}\right)$, and the only edge going into v_{d} is $\left(v_{c}, v_{d}\right)$), that path must be in the form $\left(v_{a}, v_{b}, v_{2}, \ldots, v_{|V|-1}, v_{c}, v_{d}\right)$. Then G has a Hamiltonian cycle $\left(v_{1}, v_{2}, \ldots v_{|V|-1}, v_{1}\right)$.
Therefore Hamilton Path is $\mathcal{N} \mathcal{P}$-complete.

Proof that Longest Cycle is $\mathcal{N} \mathcal{P}$-Complete
Proof. [Longest Cycle is $\mathcal{N P}$.] Suppose $(G=(V, E), K)$ is an instance of Longest Cycle and p is a path that is a proposed cycle of length K. An algorithm to check that p is consistent with E, has no repeated vertices, and has length at least K, is polynomial with any reasonable representation of G. Moreover, since p is no larger than the representation of G, it is succinct. [Longest Cycle is $\mathcal{N} \mathcal{P}$-hard.] Suppose $(G=(V, E))$ is an instance of Hamilton Cycle. Then make an instance of Longest Cycle by letting $K=|V|$, which obviously can be done in polynomial time.
Since $K=|V|$, any cycle of length (at least) K must be a Hamilton cycle, and any Hamilton cycle must have length K.
Therefore Longest Cycle is $\mathcal{N} \mathcal{P}$-complete.

Proof that Subgraph Isomorphism is $\mathcal{N} \mathcal{P}$-Complete

Proof. [Subgraph Isomorphism is $\mathcal{N P}$.] Suppose $\left(G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\right.$ $\left(V_{2}, E_{2}\right)$) is an instance of Subgraph Isomorphism and f is a function $V_{1} \rightarrow V_{2}$ (expressed as a list of pairs where $\left(v_{1, a}, v_{2, b}\right)$ indicates $v_{1, a} \in V_{1}$, $v_{2, b} \in V_{2}$, and $\left.f\left(v_{1, a}\right)=v_{2, b}\right)$ proposed as an isomorphism. An algorithm to check that f is a one-to-one function and that for all $\left(v_{1, a}, v_{1, b}\right) \in E_{1}$, $\left(f\left(v_{1, a}\right), f\left(v_{1, b}\right)\right) \in E_{2}$, is polynomial with any reasonable representation of G. Moreover, since $|f|=O\left(V_{1}\right)$, it is succinct. [Subgraph Isomorphism is $\mathcal{N} \mathcal{P}$-hard.] Suppose $(H=(W, F))$ is an instance of Hamilton Cycle. Then construct a graph $G=(V, E)$ that such that $|V|=|W|$ and $E=\left\{\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots\left(w_{|V|}, w_{1}\right)\right\}$ An algorithm to construct this graph takes $O(V)$ time.
Note that E has only those edges that make a Hamiltonian cycle. Thus G is isomorphic to a subgraph of H iff H has a Hamiltonian cycle.
Therefore Subgraph Isomorphism is $\mathcal{N} \mathcal{P}$-complete.

Reduction from UHC to TSP (LP pg 324).
Differences between UHC and TSP:

- The graph in TSP is weighted (interpreted as distances)
- The graph in TSP is complete
- A TSP problem has a budget

Suppose we have an instance of UHC, an undirected graph $G=(V, E)$. Construct a graph with the same vertices but complete in its edges and with distances

$$
d_{i, j}= \begin{cases}0 & \text { if } i=j \\ 1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 2 & \text { otherwise }\end{cases}
$$

Set the budget to $|V|$.

Reduction from Exact Cover to Knapsack (LP pg 325).
Given an instance of Exact Cover $(\mathcal{U}, \mathcal{F} \subseteq \mathscr{P}(\mathcal{U}))$, construct an instance of Knapsack (S, K) :

- $S=\{1,2, \ldots|\mathcal{U}|\}$
- $K=2^{|\mathcal{U}|}-1=\sum_{i=0}^{|\mathcal{U}|-1}$

Interpret each set in $\mathcal{P}(S)$ as a bit vector.
Problem: Consider $S=\{1,2,3,4\}$ and proposed cover $\{\{1,3\},\{1,4\},\{1\}\}$.

Independent Set problem: Given a graph, is there a set of vertices of size k with none adjacent to each other?

Reduction from 3Sat to Independent Set (LP pg 326-327.)
Suppose we have an instance of 3 SAT, $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$. WOLOG, suppose each clause has exactly three literals. Construct an instance of Independent Set, (G, K) where $K=m$ and $G=(V, E)$ such that

- There is a vertex in V for each literal occurrence (or clause position) $c_{i, j}$.
- $\left(c_{i, j}, c_{x, y}\right) \in E$ if either
- $i=x$ (they are positions in the same clause; this makes a triangle of vertices), or
- the literals $c_{i, j}$ and $c_{x, y}$ are negations of each other.

Suppose an independent set of size K exists in G. It must include exactly one vertex in each triangle. Make a truth assignment that makes each literal in the set true. Suppose a satisfying truth assignment exists. Then for each triangle, pick one vertex corresponding to a true literal.

