
Proof of Theorem 4.5.1 [LP pg 224.]

Main idea:

Simulate all computations until you get a halt (if ever).

At a given configuration, say (q, uav). The next step considers only state q and
symbol a. The maximum number of next steps is

r = |K | · (|Σ|+ 2)

Let Md be the “deterministic version” of M.

Tape 1: . · · · a b c c a b b b · · ·
↑

Tape 2: . · · · 7 1 13 2 4 · · ·
↑



Proof of Theorem 4.5.1, continued.

Define M ′ with three tapes: One for the original input, one for the tape of the current
simulation of M, and one for the current hint tape for Md . Algorithm for M ′:

copy input onto the simulation tape
put 1 onto the hint tape

L: Operate like Md

if you ever halt, then great!
if you run out of hints,

copy original input back to the simulation tape
put the lexicographically next hint on the hint tape
goto L



https://dilbert.com/search_results?terms=Illogical+Scientist

Undecidability has been so much a part of the culture of computer science
since its beginnings, that it is easy to forget what a curious fact it is. Strictly
speaking, once we accept the identification of problems with languages and
algorithms as Turing machines, there are trivial reasons why there must be
undecidable problems: There are more languages (uncountably many) than
ways of deciding them (Turing machines). Still, that such problems exist so
close to our computational ambitions was a complete surprise when it was first
observed in the 1930’s. Undecidability is in some sense the most lethal form
of complexity. C Papadimitriou, Computational Complexity, pg 59

https://dilbert.com/search_results?terms=Illogical+Scientist


Gödel’s Theorem appears as Proposition VI in his 1931 paper “On Formally
Undecidable Propositions in Principia Mathematica and Related Systems I.”
It states [paraphrased]:

All consistent axiomatic formulations of number theory include undecidable
propositions.

Gödel had the insight that a statement of number theory could be about a
statement of number theory, if only numbers could somehow stand for state-
ments. The grand conclusion: That the system of [Russel and Whitehead’s]
Principia Mathematica is “incomplete”—there are true statements of number
theory which its methods of proof are too weak to demonstrate.

D Hofstadter, Gödel, Escher, Bach, pg 17–18, abridged



But if Principia Mathematica was the first victim of this stroke, it was certainly
not the last. The phrase “and Related Systems” in the title of Gödel’s article is
a telling one; for if Gödel’s result had merely pointed out a defect in the work of
Russell and Whitehead, then others could have been inspired to improve upon
P.M. and to outwit Gödel’s Theorem. But this was not possible: Gödel’s proof
pertained to any axiomatic system which purported to achieve the aims which
Whitehead and Russell had set for themselves. In short, Gödel showed that
provability is a weaker notion than truth, no matter what axiomatic system is
involved.
Therefore Gödel’s Theorem had an electrifying affect upon logicians, mathe-
maticians, and philosophers interested in the foundations of mathematics, for
it showed that no fixed system, no matter how complicated, could represent
the complexity of the whole numbers. Modern readers may not be as non-
plussed by this as readers of 1931 were, since in the interim our culture has
absorbed Gödel’s Theorem, along with the conceptual revolutions of relativity
and quantum mechanics, and their philosophically disorienting messages have
reached the public, even if cushioned by several layers of translation (and ob-
fuscation). There is a general mood of expectation, these days, of “limitive”
results—but back in 1931, this came as a bolt from the blue.

D Hofstadter, Gödel, Escher, Bach, pg 19, abridged


