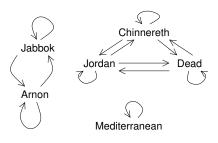
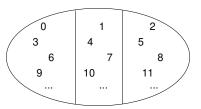
Chapter 5 roadmap:

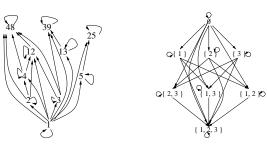
- Introduction to relations (previous week Monday)
- Properties of relations (previous week Wednesday and Friday)
- Transitive closure (last week Friday)
- Partial order relations (Today)
- Review for Test 2 (Wednesday)
- ► Test 2 on Chapters 4 & 5 (Friday)

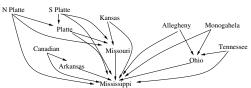
Today:

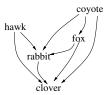
- Antisymmetry
- Partial order relations
- Topological sort

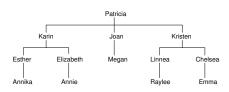


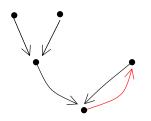


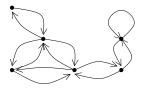






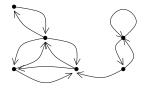




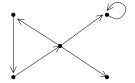


symmetric

All arrows have a back arrow.



asymmetric (not symmetric) There exists an arrow without a back arrow.



antisymmetric ("very" not symmetric) No arrows have back arrows except self loops.

Formal definition:

A relation R on a set X is antisymmetric if $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Informal definition:

If both an arrow and its reverse exist in an antisymmetric relation R, then that arrow must be a self loop (and, hence, it is its own reverse).

Alternate formal definition:

A relation R on a set X is antisymmetric if $\forall (x,y) \in R$, either x = y or $(y,x) \notin R$.

A relation R on a set X is antisymmetric if $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

Ex 5.8.9. Prove that | (divides) on \mathbb{N} is antisymmetric.

Proof. Suppose $x, y \in \mathbb{N}$, x|y, and y|x (that is, $(x, y), (y, x) \in |$). By definition of divides, there exists $i, j \in \mathbb{N}$ such that

$$\begin{array}{rcl}
x & = & i \cdot y \\
y & = & j \cdot x
\end{array}$$

Then

$$egin{array}{lll} x &=& i \cdot j \cdot x & \mbox{by substitution} \ 1 &=& i \cdot j & \mbox{by cancellation} \ i &=& j = 1 & \mbox{by arithmetic} \ x &=& y & \mbox{by identity} \end{array}$$

Therefore | is antisymmetric by definition. \square

Antisymmetry:

A relation R on a set X is antisymmetric if $\forall x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y.

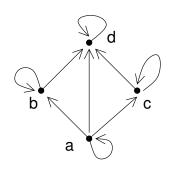
Partial order relation:

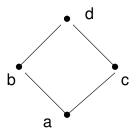
A partial order relation (or just partial order) is a relation that is reflexive, transitive, and antisymmetric.

A *strict partial order (relation)* is a relation that is irreflexive, transitive and antisymmetric.

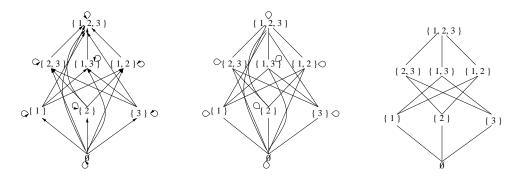
Partially ordered set:

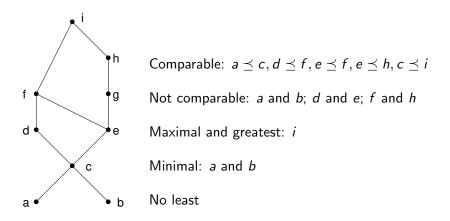
A partially ordered set or poset is a set together with a partial order on that set.



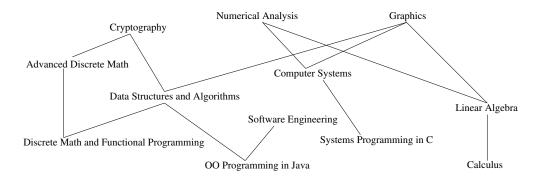


$$R = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, d), (c, c), (c, d), (d, d)\}$$





Everyday examples: Preparing a meal, writing a term paper, getting dressed



A partial order R on a set X is a *total order* if for all $x, y \in X$, either $x \leq y$ or $y \leq x$, that is, x and y are comparable.

Standard example of a total order: \leq .

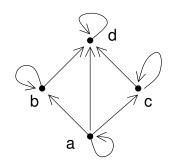
A partial order relation (or just partial order) is a relation that is reflexive, transitive, and antisymmetric.

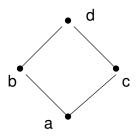
A partial order R on a set X is a *total order* if for all $x, y \in X$, either $x \leq y$ or $y \leq x$, that is, x and y are comparable.

A topological sort of a partial order R is a total order that is a superset of R.

is prerequisite for Ralph takes before

can put on before you put on before





$$R = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, d), (c, c), (c, d), (d, d)\}$$

A topological sort for $R: R \cup \{(b, c)\}$, written as a, b, c, d

Another topological sort for $R: R \cup \{(c,b)\}$, written as a, c, b, d

For next time:

Pg 226: 5.8.(1-5) Pg 231 5.9.(1 & 8)

Read 6.(1-3)