Chapter 4 roadmap:

- Subset proofs (Last week Wednesday)
- Set equality and emptiness proofs (Last week Friday)
- Conditional and biconditional proofs (Monday)
- Proofs about powersets (Today)
- From theorems to algorithms (Friday)
- (Start Chapter 5 relations next week)

Today: Case study of large proof (powersets)

Review of powersets and their recursive structure

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Big result
- Warm-up proofs
- Proving the big result

Consider the set $A = \{1, 2, 3, 4, 5\}$. Which of the following is true about the powerset $\mathscr{P}(A)$? (Only one is true.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\{3\} \in \mathscr{P}(A) \qquad \qquad 3 \in \mathscr{P}(A)$$

$$\{3\} \subseteq \mathscr{P}(A) \qquad \qquad 3 \subseteq \mathscr{P}(A)$$

$$A = \{a, b, c\} \qquad \mathscr{P}(A) = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\} \\ \{b, c\}, \{b\}, \{c\}, \emptyset\}$$

 $A - \{a\} = \{b, c\}$ $\mathscr{P}(A - \{a\}) = \{\{b, c\}, \{b\}, \{c\}, \emptyset\}$

$$\{\{a\} \cup C \mid C \in \mathscr{P}(A - \{a\})\} = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}\}$$

$$\mathcal{P}(A) = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\} = \{\{a\} \cup C \mid C \in \mathcal{P}(A - \{a\})\} \\ \{b, c\}, \{b\}, \{c\}, \emptyset\} \qquad \cup \mathcal{P}(A - \{a\})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$A = \{a, b, c\} \quad \mathscr{P}(A - \{a\}) = \{\{b, c\}, \{b\}, \{c\}, \emptyset\}$$

 $\{\{a\} \cup C \mid C \in \mathscr{P}(A - \{a\})\} = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{a\}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $a \in A$, then $\mathscr{P}(A)$ consists in $\mathscr{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\}$

Corollary 4.12. If $a \in A$, then $\mathscr{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\}$ make a partition of $\mathscr{P}(A)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $A \subseteq B$ iff $A \in \mathscr{P}(B)$

$A \in \mathscr{P}(A)$

 $\emptyset \in \mathscr{P}(A)$

 $a \in A$ iff $\{a\} \in \mathscr{P}(A)$

Warm-up proofs:

Theorem 4.7. If $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

Exercise 4.9.1. If $B \subseteq A$, then $\mathscr{P}(B) - \mathscr{P}(A) = \emptyset$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Roadmap

Corollary 4.12 $\mathscr{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\}$ make a partition of $\mathscr{P}(A)$.

 $\overline{}$

Theorem 4.11 / Exercise 4.9.6 $\mathscr{P}(A - \{a\}) \cap$ $\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\} = \emptyset$

 $\overline{}$

Theorem 4.10. $\mathscr{P}(A - \{a\}) \cup \{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\} = \mathscr{P}(A)$

 $\begin{array}{ll} \text{Lemma 4.9.} & \text{Lemma 4.8.} \\ \mathscr{P}(A - \{a\}) \cup \{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\} & \mathscr{P}(A) \subseteq \\ \subseteq \mathscr{P}(A) & \mathscr{P}(A - \{a\}) \cup \{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\} \end{array}$

For next time: Pg 174: 4.9.(1, 3, 4, 6)

Skim 4.(10 & 11)

