Chapter 3 roadmap:

- ▶ Propositions, boolean logic, logical equivalences. **Game 1** (last week Monday)
- Conditional propositions. SML (last week Wednesday)
- ► Arguments. **Game 2** (last week Friday)
- Predicates and quantification. SML (Today)
- Quantified arguments. Game 3 (Wednesday)
- ► Review for test. (Friday)
- ► Test 1. (Next week Monday)

Today:

- Predicates
- Quantification
- ▶ Practice quantification using programming problems

Project proposal due Friday, Oct 1.

Propositions:

- **▶** 3 < 5
- ► It's Thursday and it is snowing.
- ▶ If 3 < 5 then 12 < 67.

Propositional forms:

- $\triangleright p \land q$
- ightharpoonup p
 ightharpoonup q

Four ways to interpret/define the idea of a *predicate*

▶ A predicate is a proposition with a parameter.

$$x < 5$$
 x is orange

▶ A predicate is a function whose value is true or false.

$$P(x) = x < 5$$
 $Q(x) = x$ is orange

▶ A predicate is a part of a sentence that complements a noun phrase to make a proposition.

A pumpkin is orange.

A predicate is a truth set

$$P: \mathbb{N} \to \mathbb{B}, P(x) = x < 5$$
 $Q(x) = x$ is orange Truth set: $\{1, 2, 3, 4\}$ $\{$ pumpkin, fall leaves, orange juice, ... $\}$

Universal quantification

"For all multiples of 3, the sum of their digits is a multiple of 3."

Let
$$D$$
 be the set of multiples of 3, that is $D = \{n \in \mathbb{N} \mid n \mod 3 = 0\} = \{3, 6, 9, 12, 15, 18, \ldots\}$

$$\forall x \in D, sum(digify(x)) \in D$$

Other examples:

- $\forall x \in \{5, 7, 19, 23, 43\}, x \text{ is prime.}$
- ▶ $\forall x \in \{4, 16, 25, 31\}$, x is a perfect square.

Existential quantification

"There is a multiple of 3 that is not a perfect square."

 $\exists x \in D \mid x \text{ is not a perfect square}$

Alternately, "Some multiples of 3 are not perfect squares."

General forms for universal and existential quantification:

$$\forall x \in X, P(x) \qquad \exists x \in X \mid P(x)$$

$$\forall x \in \emptyset, P(x)$$
 is always (vacuously) true.

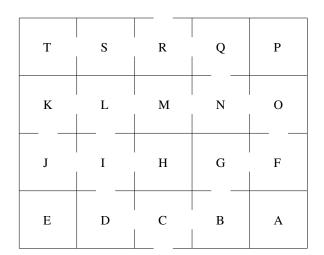
$$\exists x \in \emptyset \mid P(x)$$
 is always false

$$\sim (\forall \ x \in X, P(x))$$

$$\equiv \sim (P(x_1) \land P(x_2) \land \cdots)$$

$$\equiv \sim P(x_1) \lor \sim P(x_2) \lor \cdots \quad \text{By DeMorgan's Law}$$

$$\equiv \exists \ x \in X \mid \sim P(x)$$



- 1. Bob passed through P.
- 2. Bob passed through N.
- 3. Bob passed through M.
- 4. If Bob passed through O, then Bob passed through F.
- 5. If Bob passed through K, then Bob passed through L.
- 6. If Bob passed through L, then Bob passed through K.

Let X be the routes through the maze, that is, $X = \{CBGFONQR, CDILMNQR, CDIJKLMNQR\}$

Let P(x) = route x contains L, Q(x) = route x contains K.

Consider $\forall x \in X, P(x) \rightarrow Q(x)$.

X	P(x)	Q(x)	$P(x) \rightarrow Q(x)$
CBGFONQR			
CDILMNQR			
CDIJKLMNQR			

Т	S	R 	 Q 	P
К	L	М 	N 	0
J	I	н	G	F
Е	D	С	В	A

For next time:

Pg 133: 3.12.(1 & 2)

Pg 135: 3.13.(4 & 5)

Read 3.14