Chapter 5 roadmap:

- Introduction to relations (Monday)
- Properties of relations (Today and Friday)
- Transitive closure (next week Friday)
- Partial order relations (the following Monday)
- Review for Test 2 (the following Wednesday)

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

Today and next time:

- Review of definitions from last time
- Properties of relations
 - Reflexivity
 - Symmetry
 - Transitivity
- Proofs
- More proofs

For next time (Fri, Oct 22):

Pg 205: 5.3.(5, 11, 14) Pg 208: 5.4.(3, 4, 5, 22, 24, 25) Pg 212: 5.5.(7, 9, 10)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

A relation from one set to another	R	set of pairs	subset of $X \times Y$ $R \subseteq X \times Y$	isEnrolledIn, isTaughtBy
A relation on a set	R	set of pairs	subset of $X \times X$ $R \subseteq X \times X$	eats, divides
The image of an element under a relation	$\mathcal{I}_R(a)$	set	set of things that a is related to $\mathcal{I}_R(a) = \{b \in Y \mid (a, b) \in R\}$	classes Bob is enrolled in, numbers that 4 divides
The image of a set under a relation	$\mathcal{I}_R(A)$	set	set of things that things in A are related to $\mathcal{I}_R(A) = \{ b \in Y \mid \exists a \in A \mid (a, b) \in R \}$	classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide
The inverse of a relation	R^{-1}	relation	the arrows/pairs of R reversed $R^{-1} = \{(b, a) \in Y imes X \mid (a, b) \in R\}$	hasOnRoster, teaches, isEatenBy, isDivisibleBy
The composition of two relations	<i>S</i> ∘ <i>R</i>	relation	two hops combined to one hop (Assume $S \subseteq Y \times Z$) $S \circ R = \{(a, c) \in X \times Z \mid \exists b \in Y \mid (a, b) \in R \land (b, c) \in S\}$	hasAsProfessor, eatsSomethingThatEats
The identity relation on a set	i _X	relation	everything is related only to itself $i_X = \{(x, x) \mid x \in X\}$	

Ex 5.3.7. Prove that if R is a relation on a set A and $(a, b) \in R$, then $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$.

Proof. Suppose R is a relation over A and that $(a, b) \in R$.

[Note that $(a, b) \in R$ implies that both a and b must be elements of A.]

Suppose $x \in \mathcal{I}_R(b)$. By definition of image, $(b, x) \in R$. Since $(a, b) \in R$, we have $(a, x) \in R \circ R$ by definition of composition. Moreover $x \in \mathcal{I}_{R \circ R}(a)$ by definition of image.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Therefore $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$ by definition of subset. \Box

Ex 5.3.9. Prove that if *R* is a relation from *A* to *B*, then $i_B \circ R = R$. **Proof.** First suppose $(x, y) \in i_B \circ R$. By definition of composition, there exists $b \in B$ such that $(x, b) \in R$ and $(b, y) \in i_B$.

By definition of the identity relation, b = y. By substitution, $(x, y) \in R$. Hence $i_B \circ R \subseteq R$ by definition of subset.

Next suppose $(x, y) \in R$. By how R is defined, we know $x \in A$ and $y \in B$.

By definition of the identity relation, $(y, y) \in i_B$. By definition of composition, $(x, y) \in i_B \circ R$. Hence $R \subseteq i_B \circ R$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Therefore, by definition of set equality, $i_B \circ R = R$. \Box

HW. Ex 5.3.8. Is $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \subseteq A$? Is $A \subseteq \mathcal{I}_{R^{-1}}(\mathcal{I}_R(A))$?

HW. Ex 5.3.10. $(R^{-1})^{-1} = R$.

ReflexivityInformalEverything is related to itselfFormal $\forall x \in X, (x, x) \in R$

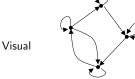
Symmetry

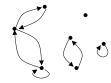
All pairs are mutual

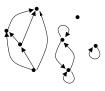
Transitivity

Anything reachable by two hops is reachable by one hop

 $\begin{aligned} \forall x, y, z \in X, \\ (x, y), (y, z) \in R \rightarrow (x, z) \in R \\ \text{OR} \\ \forall (x, y), (y, z) \in R, (x, z) \in R \end{aligned}$







≡, isOppositeOf, isOnSameRiver, isAquaintedWith $<, \leq, >, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Reflexivity	Symmetry	Transitivity
Formal	$\forall x \in X, (x, x) \in R$	$ \forall x, y \in X, (x, y) \in R \rightarrow (y, x) \in R OR \forall (x, y) \in R, (y, x) \in R $	$ \begin{array}{l} \forall \ x, y, z \in X, \\ (x, y), (y, z) \in R \rightarrow (x, z) \in R \\ \text{OR} \\ \forall \ (x, y), (y, z) \in R, (x, z) \in R \end{array} $
Analytical use	Suppose R is reflexive and $a \in X$.	Suppose R is symmetric $[a, b \in X]$ and $(a, b) \in R$.	Suppose R is transitive $[a, b, c \in X]$ and $(a, b), (b, c) \in R$.
	Then $(a, a) \in R$.	Then $(b, a) \in R$	Then $(a, c) \in R$.
Synthetic use	Suppose $a \in X$.	Suppose $(a, b) \in R$.	Suppose $(a, b), (b, c) \in R$.
	$(a, a) \in R$. Hence <i>R</i> is reflexive.	$(b, a) \in R$. Hence R is symmetric.	$(a,c)\in R.$ Hence R is transitive.

Theorem 5.5. | (divides) is reflexive.

Exercise 5.4.2. | (divides) is not symmetric.

Theorem 5.6. $R \cap R^{-1}$ is symmetric.

Theorem 5.7. | is transitive.

Exercise 5.4.20. $R^{-1} \circ R$ is reflexive. *(False)*

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Exercise 5.4.21. If *R* and *S* are both reflexive, then $R \cap S$ is reflexive.

Exercise 5.4.23. If *R* and *S* are both symmetric, then $(S \circ R) \cup (R \circ S)$ is symmetric.

Based on Exercise 5.5.5. If *R* is transitive, then $R \circ R \subseteq R$.

Exercise 5.4.27. If *R* is transitive, $\mathcal{I}_R(\mathcal{I}_R(A)) \subseteq \mathcal{I}_R(A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Exercise 5.5.4. If R is reflexive and

(for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(c, a) \in R$),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

then R is an equivalence relation.

Exercise 5.5.8. If *R* and *S* are equivalence relations, then $S \circ R$ is an equivalence relation. (*True or false*?)

Exercise 5.5.6. If R is an equivalence relation and $(a, b) \in R$, then $\mathcal{I}_R(a) = \mathcal{I}_R(b)$.

For next time (Fri, Oct 22):

Pg 205: 5.3.(5, 11, 14) Pg 208: 5.4.(3, 4, 5, 22, 24, 25) Pg 212: 5.5.(7, 9, 10)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで