Chapter 7 outline:

- Introduction, function equality, and anonymous functions (last Friday)
- Image and inverse images (Today)
- Function properties, composition, and applications to programming (Wednesday)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Cardinality (Friday)
- Countability (next week Monday)
- Review (Monday, Nov 29)
- Test 3, on Ch 6 & 7 (Wednesday, Dec 1)

Today:

- Review definitions from last time
- New definitions: image and inverse image
- Proofs
- Programming

A relation f from X to Y is a function (written $f : X \to Y$) if $\forall x \in X$, (1) $\exists y \in Y \mid (x, y) \in f$, and (2) $\forall y_1, y_2 \in Y$, $(x, y_1), (x, y_2) \in f \to y_1 = y_2$.

Not a function.

(There's a domain element that is related to two things.)

(There's a domain element that is not related to anything.)

Not a function.

A function.

(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

Image

Inverse image

$$F^{-1}(B) = \{x \in X \mid f(x) \in B\}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

Lemma 7.2. If $f : X \to Y$, then $F(\emptyset) = \emptyset$.

Lemma 7.3. If $f : X \to Y$, $A \subseteq X$, and $A \neq \emptyset$, then $F(A) \neq \emptyset$.

Lemma 7.4. If $f : X \to Y$, then $F^{-1}(\emptyset) = \emptyset$.

We might expect the following, but *it's not true*:

Lemma XXXX. If $f : X \to Y$, $A \subseteq Y$, and $A \neq \emptyset$, then $F^{-1}(A) \neq \emptyset$.

▲ロト ▲御ト ▲画ト ▲画ト ▲目 ● の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少々で

Consider this picture of X and Y:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Attempted proof. Suppose $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

Attempted proof. Suppose $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

By definition of difference, $x \in A$, and $x \notin B$. By definition of image, $f(x) \in F(A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Attempted proof. Suppose $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

By definition of difference, $x \in A$, and $x \notin B$. By definition of image, $f(x) \in F(A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

So, also by definition of image, $f(x) \notin B$. Right?

Attempted proof. Suppose $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

By definition of difference, $x \in A$, and $x \notin B$. By definition of image, $f(x) \in F(A)$.

So, also by definition of image, $f(x) \notin B$. Right?

NO!

Let $X = \{x_1, x_2\}$, $Y = \{y\}$, $A = \{x_1\}$, and $B = \{x_2\}$. Let $f = \{(x_1, y), (x_2, y)\}$. Then $F(A - B) = F(\{x_1\} - \{x_2\}) = F(\{x_1\}) = \{y\}$. Moreover, $F(A) - F(B) = \{y\} - \{y\} = \emptyset$. So $F(A - B) \not\subseteq F(A) - F(B)$

(日) (部) (注) (注) (注)

Ex 7.4.4. If $A \subseteq B \subseteq X$, then $F(B) = F(B - A) \cup F(A)$.

Ex 7.4.6. If $A \subseteq B \subseteq Y$, then $F^{-1}(A) \subseteq F^{-1}(B)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Ex 7.4.7. If $A, B \subseteq Y$, then $F^{-1}(A \cup B) = F^{-1}(A) \cup F^{-1}(B)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

For next time:

Pg 342: 7.4.(2, 5, 8, 9, 10) (Programming problems are with the next assignment) Read 7.(6-8) Take quiz

