
Chapter 6 roadmap:

I Recursive definitions and types (Monday)

I Structural induction (Today)

I Mathematical induction (Friday)

I Loop invariant proofs (next week Monday and Wednesday)

Last time we saw

I A recursive definition of whole numbers
I A recursive definition of trees, particularly full binary trees; a full binary tree is

either
I a leaf, or
I an internal node together with two children which are full binary trees.

Today we see

I Self-referential proofs
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While building bigger trees from smaller trees, the number of nodes is (and remains)
one more than the number of links. (Invariant)

Theorem 6.1 For any full binary tree T , nodes(T ) = links(T ) + 1.

Let T be the set of full binary trees. Then, we’re saying

∀ T ∈ T , nodes(T ) = links(T ) + 1



Theorem 6.1 For any full binary tree T , nodes(T ) = links(T ) + 1.

Proof. Suppose T ∈ T . [What is a tree? the definition says it’s either a leaf
or an internal with two subtrees. We can use division into cases.]

Case 1. Suppose T is a leaf. Then, by how nodes and links are defined,
nodes(T ) = 1 and links(T ) = 0. Hence nodes(T ) = links(T ) + 1.

Case 2. Suppose T is an internal node with links to subtrees T1 and T2.
Moreover, by how nodes and links are defined, links(T ) = links(T1) +
links(T2) + 2. Then,

nodes(T ) = 1 + nodes(T1) + nodes(T2) by the definition of nodes
= 1 + links(T1) + 1 + links(T2) + 1 by Theorem 6.1
= links(T1) + links(T2) + 2 + 1 by algebra
= links(T ) + 1 by substitution

Either way, nodes(T ) = links(T ) + 1. �
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Theorem 6.1 For any full binary tree T , nodes(T ) = links(T ) + 1.

Proof. Suppose T ∈ T .

Base case. Suppose T is a leaf. Then, by how nodes and links are defined,
nodes(T ) = 1 and links(T ) = 0. Hence nodes(T ) = links(T ) + 1.

Inductive case Suppose T is an internal node with links to subtrees T1 and
T2 such that nodes(T1) = links(T1) + 1 and nodes(T2) = links(T2) + 1.
Moreover, by how nodes and links are defined, links(T ) = links(T1) +
links(T2) + 2. Then,

nodes(T ) = 1 + nodes(T1) + nodes(T2) by the definition of nodes
= 1 + links(T1) + 1 + links(T2) + 1 by the inductive hypothesis
= links(T1) + links(T2) + 2 + 1 by algebra
= links(T ) + 1 by substitution

Either way, nodes(T ) = links(T ) + 1. �



Let X be a a recursively defined set, and let {Y ,Z} be a partition of X , where Y is
defined by a simple set of elements Y = {y1, y2, . . .} and Z is defined by a recursive
rule.

Examples:

I X is the let of lists, Y = {[]}, and Z = {a :: rest | rest ∈ X}
I X = W, Y = {0}, and Z = {succ(n) |n ∈W}
I X = T , Y is the set of leaves, and Z is the set of internals with children

T1,T2 ∈ T .



Let X be a a recursively defined set, and let {Y ,Z} be a partition of X , where Y is
defined by a simple set of elements Y = {y1, y2, . . .} and Z is defined by a recursive
rule.

To prove something in the form of ∀ x ∈ X , I (x), do this:

Base case: Suppose x ∈ Y .
...
I (x)
Inductive case: Suppose x ∈ Z . [Using x and the definition of Z , find
components a, b, . . . ∈ X .]
Suppose I (a), I (b), . . .. [The inductive hypothesis]
...

Use the inductive hypothesis
...
I (x) �



1. For all x ∈W, 0 ≤ x

2. For all x , y ∈W, if x ≤ y then succ(x) ≤ succ(y).

3. For all x ∈W, x + 0 = x and 0 + x = x .

4. For all x , y ∈W, x + succ(y) = succ(x) + y

Exercise 6.4.5. For all x ∈W, w ≤ succ(w).



For next time:
Pg 268: 6.4.(3,4,6,7)

Skim 6.(5 & 6)


