
Chapter 6 roadmap:

I Recursive definitions and types (Monday)

I Structural induction (Today)

I Mathematical induction (Friday)

I Loop invariant proofs (next week Monday and Wednesday)

Last time we saw

I A recursive definition of whole numbers
I A recursive definition of trees, particularly full binary trees; a full binary tree is

either
I a leaf, or
I an internal node together with two children which are full binary trees.

Today we see

I Self-referential proofs



Tree Nodes Links

1 0

3 2

5 4

Tree Nodes Links

5 4

7 6



While building bigger trees from smaller trees, the number of nodes is (and remains)
one more than the number of links. (Invariant)

Theorem 6.1 For any full binary tree T , nodes(T ) = links(T ) + 1.

Let T be the set of full binary trees. Then, we’re saying

∀ T ∈ T , nodes(T ) = links(T ) + 1



Theorem 6.1 For any full binary tree T , nodes(T ) = links(T ) + 1.

Proof. Suppose T ∈ T . [What is a tree? the definition says it’s either a leaf
or an internal with two subtrees. We can use division into cases.]

Case 1. Suppose T is a leaf. Then, by how nodes and links are defined,
nodes(T ) = 1 and links(T ) = 0. Hence nodes(T ) = links(T ) + 1.

Case 2. Suppose T is an internal node with links to subtrees T1 and T2.
Moreover, by how nodes and links are defined, links(T ) = links(T1) +
links(T2) + 2. Then,

nodes(T ) = 1 + nodes(T1) + nodes(T2) by the definition of nodes
= 1 + links(T1) + 1 + links(T2) + 1 by Theorem 6.1
= links(T1) + links(T2) + 2 + 1 by algebra
= links(T ) + 1 by substitution

Either way, nodes(T ) = links(T ) + 1. �



it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it holds for this
tree because

it’s a leaf

it’s a leaf

and

and

it’s a leaf it’s a leaf

it holds for this
tree because

and



Theorem 6.1 For any full binary tree T , nodes(T ) = links(T ) + 1.

Proof. Suppose T ∈ T .

Base case. Suppose T is a leaf. Then, by how nodes and links are defined,
nodes(T ) = 1 and links(T ) = 0. Hence nodes(T ) = links(T ) + 1.

Inductive case Suppose T is an internal node with links to subtrees T1 and
T2 such that nodes(T1) = links(T1) + 1 and nodes(T2) = links(T2) + 1.
Moreover, by how nodes and links are defined, links(T ) = links(T1) +
links(T2) + 2. Then,

nodes(T ) = 1 + nodes(T1) + nodes(T2) by the definition of nodes
= 1 + links(T1) + 1 + links(T2) + 1 by the inductive hypothesis
= links(T1) + links(T2) + 2 + 1 by algebra
= links(T ) + 1 by substitution

Either way, nodes(T ) = links(T ) + 1. �



Let X be a a recursively defined set, and let {Y ,Z} be a partition of X , where Y is
defined by a simple set of elements Y = {y1, y2, . . .} and Z is defined by a recursive
rule.

Examples:

I X is the let of lists, Y = {[]}, and Z = {a :: rest | rest ∈ X}
I X = W, Y = {0}, and Z = {succ(n) |n ∈W}
I X = T , Y is the set of leaves, and Z is the set of internals with children

T1,T2 ∈ T .



Let X be a a recursively defined set, and let {Y ,Z} be a partition of X , where Y is
defined by a simple set of elements Y = {y1, y2, . . .} and Z is defined by a recursive
rule.

To prove something in the form of ∀ x ∈ X , I (x), do this:

Base case: Suppose x ∈ Y .
...
I (x)
Inductive case: Suppose x ∈ Z . [Using x and the definition of Z , find
components a, b, . . . ∈ X .]
Suppose I (a), I (b), . . .. [The inductive hypothesis]
...

Use the inductive hypothesis
...
I (x) �



1. For all x ∈W, 0 ≤ x

2. For all x , y ∈W, if x ≤ y then succ(x) ≤ succ(y).

3. For all x ∈W, x + 0 = x and 0 + x = x .

4. For all x , y ∈W, x + succ(y) = succ(x) + y

Exercise 6.4.5. For all x ∈W, w ≤ succ(w).



For next time:
Pg 268: 6.4.(3,4,6,7)

Skim 6.(5 & 6)


