Chapter 7 outline:

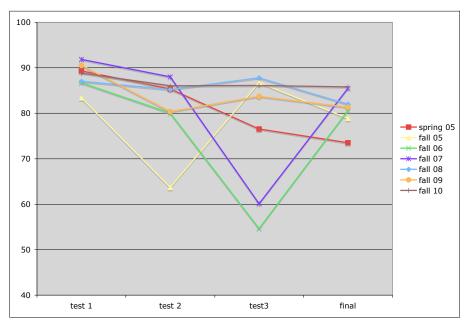
- Introduction, function equality, and anonymous functions (last week Friday)
- Image and inverse images (Monday)
- Function properties, composition, and applications to programming (Wednesday)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Cardinality (Today)
- Practice quiz and Countability (next wee Monday)
- Review (Monday, Nov 28)
- Test 3, on Ch 6 & 7 (Wednesday, Nov 30)

Today:

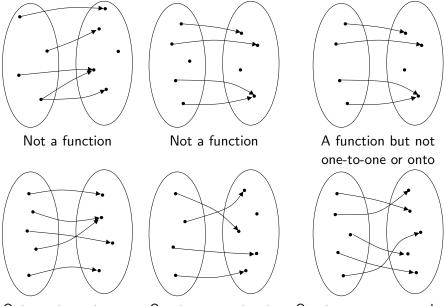
- Homework hints
- Formal definition of cardinality
- If $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$
- If $f : A \rightarrow B$ is one-to-one, then $|A| \leq |B|$.



Ex. 7.6.3. If $A, B \subseteq X$ and f is one-to-one, then $F(A - B) \subseteq F(A) - F(B)$.

Ex. 7.8.1. If $f : A \rightarrow B$, then $f \circ i_A = f$.

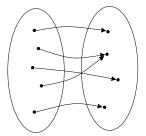
◆□ → ◆□ → ◆三 → ◆三 → ◆ ○ ◆ ◆ ◆

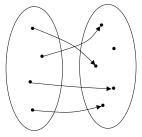


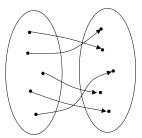
Onto, not one-to-one

One-to-one, not onto One-to

One-to-one correspondence







Onto, not one-to-one $|X| \ge |Y|$

One-to-one, not onto $|X| \leq |Y|$

One-to-one correspondence |X| = |Y|

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Two finite sets X and Y have the *the same cardinality* as each other if there exists a one-to-one correspondence from X to Y.

To use this *analytically*:

Suppose X and Y have the same cardinality. Then let f be a one-to-one correspondence from X to Y.

f is both onto and one-to-one.

To use this *synthetically*:

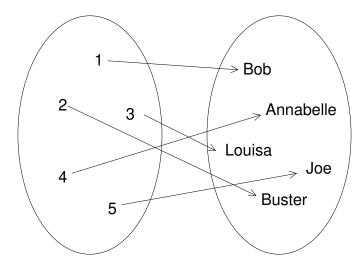
Given sets X and Y ...

[Define f] Let $f : X \to Y$ be a function defined as ...

Suppose $y \in Y$. Somehow find $x \in X$ such that f(x) = y. Hence f is onto. Suppose $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Somehow show $x_1 = x_2$. Hence f is one-to-one.

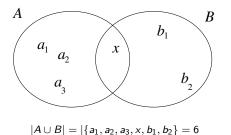
Since f is a one-to-one correspondence, X and Y have the same cardinality as each other.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as |X| = n, if there exists a one-to-one correspondence from $\{1, 2, ..., n\}$ to X. Moreover, $|\emptyset| = 0$.



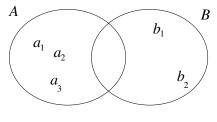
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem 7.12. If A and B are finite, disjoint sets, then $|A \cup B| = |A| + |B|$. **Theorem 7.13.** If A and B are finite sets and $f : A \rightarrow B$ is one-to-one, then $|A| \le |B|$. **Exercise 7.9.5.** If A and B are finite sets and $f : A \rightarrow B$ is onto, then $|A| \ge |B|$.



$$|A| + |B| =$$

= |{a₁, a₂, a₃, x}| + |{x, b₁, b₂}|
= 4 + 3 = 7

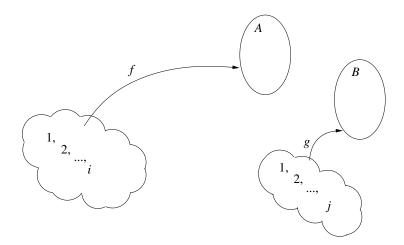


$$|A \cup B| = |\{a_1, a_2, a_3, b_1, b_2\} = 5$$

$$|A| + |B| =$$

= $|\{a_1, a_2, a_3\}| + |\{b_1, b_2\}|$
= 3 + 2 = 5

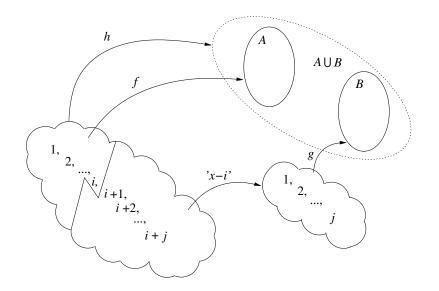
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

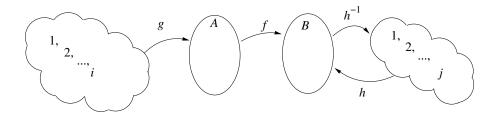
;	x	f	x	g
	1	Zed	1	Wilhelmina
2	2	Yelemis	2	Valerie
	3	Xavier	3	Ursula
			4	Tassie

x	h				
1	f(1)	=	Zed		
2	f(2)	=	Yelemis		
3	f(3)	=	Xavier		
4	g(4-3)	=	g(1)	=	Wilhelmina
5	g(5-3)	=	g(2)	=	Valerie
6	g(6-3)	=	g(3)	=	Ursula
7	g(7-3)	=	g(4)	=	Tassie

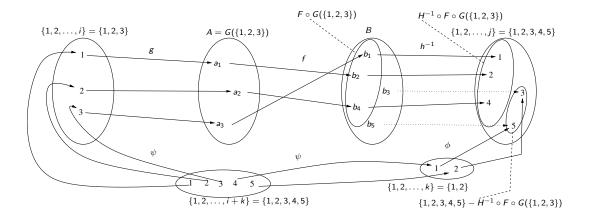


◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

f: A ightarrow B is one-to-one $ightarrow |A| \le |B|$



$f: A \rightarrow B$ is one-to-one $\rightarrow |A| \leq |B|$



▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

For next time: Pg 359: 7.9.(1 & 2)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●