Where we are:

- Making types in SML (last week Wednesday)
- Functions in SML (last week Friday)
- Lists and functions on lists (Wednesday)
- Powersets; a language processor (Today)
- Propositional forms, logical equivalence [Start Chapter 3] (next week Monday)

Today:

- Powersets
- Definition
- Exploration
- A language processor
- Case expressions and option types
- The language processor itself
- Introducing the semester project


## Review

- List literals: [1, 4, 12, 3], []
- Analytic operations: hd, tl
- Synthetic operations: : : (cons), @ (cat)
- Lists vs tuples
- Type analysis problems :

- Lists as models for sets

Powersets

- Informal definition: The powerset of a set is the set of all subsets of that set.
- Formal definition: The powerset of a set $X$ is

$$
\mathscr{P}(X)=\{Y \mid Y \subseteq X\}
$$

- For "set of sets," think "box of boxes."
- Examples:

Why powersets seem to throw some people:

- The elements of a powerset are themselves sets.
- Suppose $X \subseteq \mathcal{U}$. Then
- If $x \in X$, then $x \in \mathcal{U}$
- $\mathscr{P}(X) \nsubseteq \mathcal{U}$, but rather $\mathscr{P}(X) \subseteq \mathscr{P}(\mathcal{U})$
- If $A \in \mathscr{P}(X)$, then $A \in \mathscr{P}(\mathcal{U})$
- $\mathscr{P}(\emptyset)=\{\emptyset\} \neq \emptyset .|\emptyset|=0$, but $|\{\emptyset\}|=1$

Which are true?

$$
\{3\} \in \mathscr{P}(\{1,2,3,4,5\})
$$

$$
3 \in \mathscr{P}(\{1,2,3,4,5\})
$$

$\{3\} \subseteq \mathscr{P}(\{1,2,3,4,5\})$
$3 \subseteq \mathscr{P}(\{1,2,3,4,5\})$
$a \in A$ iff $\{a\} \in \mathscr{P}(A)$
$a \in A$ iff $\{a\} \subseteq \mathscr{P}(A)$
$A \subseteq B$ iff $A \subseteq \mathscr{P}(B)$
$A \subseteq B$ iff $A \in \mathscr{P}(B)$

Which are true?
$A \subseteq B$ iff $A \subseteq \mathscr{P}(B)$
$A \in \mathscr{P}(A)$
$\mathbb{Z} \in \mathscr{P}(\mathbb{R})$
$\{A\} \in \mathscr{P}(A)$
$\{A\} \subseteq \mathscr{P}(A)$
$\emptyset=\mathscr{P}(\emptyset)$

Note that

- $a \in A$ iff $\{a\} \in \mathscr{P}(A)$
- $A \subseteq B$ iff $A \in \mathscr{P}(B)$
- $A \subseteq B$ iff $\mathscr{P}(A) \subseteq \mathscr{P}(B)$
- $\mathscr{P}(\emptyset)=\{\emptyset\} \neq \emptyset$

Observe

$$
\begin{aligned}
& \mathscr{P}(\{1,2,3\})=\left\{\begin{array}{l}
\emptyset \\
\\
\\
\\
\\
\{1\},\{2\},\{3\} \\
\\
\{1,2,3\}
\end{array}=\left\{\begin{array}{l}
\{1,3\},\{2,3\} \\
\emptyset,\{2\}, 2\},\{1,3\},\{1,2,3\}
\end{array}\right.\right. \\
&=\mathscr{P}(\{2,3\}) \cup\left[\begin{array}{l}
1 \text { added to each set } \\
\text { of } \mathscr{P}(\{2,3\})
\end{array}\right]= \mathscr{P}(\{2,3\}) \cup \\
&\{\{1\} \cup X \mid X \in \mathscr{P}(\{2,3\})\}
\end{aligned}
$$

If $a \in A$, then $\mathscr{P}(A)=\mathscr{P}(A-\{a\}) \cup\{\{a\} \cup X \mid X \in \mathscr{P}(A-\{a\})\}$

What is $|\mathscr{P}(X)|$ in terms of $|X|$ ?

## Grammar:

# Sentence $\rightarrow$ NounPhrase Predicate PrepPhrase ${ }_{\text {opt }}$ 

## NounPhrase $\rightarrow$ Article Adjective ${ }_{\text {opt }}$ Noun

Predicate $\rightarrow$ Adverb $_{\text {opt }}$ VerbPhrase

## Grammar, continued:

VerbPhrase $\rightarrow\left\{\begin{array}{l}\text { TransitiveVerb NounPhrase } \\ \text { IntransitiveVerb } \\ \text { LinkingVerb Adjective }\end{array}\right.$

$$
\text { PrepPhrase } \rightarrow \text { Preposition NounPhrase }
$$

## Vocabulary：

Articles：a the
Adjectives：big bright fast beautiful smart red smelly
Nouns：man woman dog unicorn ball field flea tree
Adverbs：quickly slowly happily dreamily
Transitive verbs：chased saw greeted bit loved
Intransitive verbs：ran slept sang
Linking verbs：was felt seemed

Prepositions：in on through with

## For next time:

If you had trouble on the programming problems from last time, ask for help and try again.

Pg 74: 2.2.(11, 13, 15)
Pg 82: 2.4.(8-12, 14 \& 15)
Read 3.(1-4)

