Chapter 3 roadmap:

▶ Propositions, boolean logic, logical equivalences. Game 1 (last week Monday)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Conditional propositions. SML (last week Wednesday)
- Arguments. Game 2 (last week Friday)
- Predicates and quantification. SML (Today)
- Quantified arguments. Game 3 (Wednesday)
- Review for test. (Friday)
- Test 1. (next week Monday)

Today:

- Predicates
- Quantification
- Practice quantification using programming problems

Project proposal due Friday, Sept 30.

Propositions:

- ▶ 3 < 5
- It's Thursday and it is snowing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ If 3 < 5 then 12 < 67.

Propositional forms:

- ▶ $p \land q$
- ▶ $p \rightarrow q$

Four ways to interpret/define the idea of a predicate

A predicate is a proposition with a parameter.

x < 5 x is orange

A predicate is a function whose value is true or false.

P(x) = x < 5 Q(x) = x is orange

A predicate is a part of a sentence that complements a noun phrase to make a proposition.

A pumpkin is orange.

► A predicate is a truth set $P: \mathbb{N} \to \mathbb{B}, P(x) = x < 5$ Truth set: {1,2,3,4} Q(x) = x is orange Q(x) = x is orange Q(x) = x is orange

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Universal quantification

"For all multiples of 3, the sum of their digits is a multiple of 3."

Let *D* be the set of multiples of 3, that is $D = \{n \in \mathbb{N} \mid n \mod 3 = 0\} = \{3, 6, 9, 12, 15, 18, \ldots\}$

 $\forall \ x \in D, \mathtt{sum}(\mathtt{digify}(x)) \in D$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Other examples:

- ▶ $\forall x \in \{5, 7, 19, 23, 43\}$, x is prime.
- ▶ $\forall x \in \{4, 16, 25, 31\}$, x is a perfect square.

Existential quantification

"There is a multiple of 3 that is not a perfect square."

 $\exists x \in D \mid x \text{ is not a perfect square}$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Alternately, "Some multiples of 3 are not perfect squares."

General forms for universal and existential quantification:

$$\forall x \in X, P(x) \qquad \exists x \in X \mid P(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

 $\forall x \in \emptyset, P(x)$ is always (vacuously) true.

 $\exists x \in \emptyset \mid P(x)$ is always false

$$\sim (\forall \ x \in X, P(x))$$

$$\equiv \ \sim (P(x_1) \land P(x_2) \land \cdots)$$

$$\equiv \ \sim P(x_1) \lor \sim P(x_2) \lor \cdots$$
 By DeMorgan's Law

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

$$\equiv \exists x \in X \mid \sim P(x)$$

Т	S	R	Q	Р
К	L	М	Ν	О
J	Ι	Н	G	F
Е	D	С	В	А

- 1. Bob passed through P.
- 2. Bob passed through N.
- 3. Bob passed through M.
- 4. If Bob passed through O, then Bob passed through F.
- 5. If Bob passed through K, then Bob passed through L.
- 6. If Bob passed through L, then Bob passed through K.

Based on example by Susanna Epp, 2006

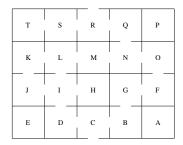
Let X be the routes through the maze, that is, $X = \{CBGFONQR, CDILMNQR, CDIJKLMNQR\}$

Let P(x) = route x contains L, Q(x) = route x contains K.

Consider $\forall x \in X, P(x) \rightarrow Q(x)$.

-

X	P(x)	Q(x)	$P(x) \rightarrow Q(x)$
CBGFONQR			
CDILMNQR			
CDIJKLMNQR			



(日) (四) (里) (里)

2

For next time:

Pg 133: 3.12.(1 & 2) Pg 135: 3.13.(4 & 5) Read 3.14

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで