
Prolegomena unit outline:

I Algorithms and correctness (last week Friday and this week Monday)

I Algorithms and efficiency (Wednesday and Friday)

I Abstract data types (next week Wednesday)

I Data Structures (next week Friday and week-after Monday)

Today and Friday:

I Go over Ex 1.(6 & 7)

I The general meaning of efficiency

I The analyses of bounded linear search, binary search, and selection sort

I The precise meaning of big-oh, big-theta, and big-omega

I The costs of elemental algorithms

I The analysis of merge sort and quick sort

1.6 Write a loop invariant to capture the relationships among sequence,
smallest so far, smallest pos, and i in the following algorithm to find the
smallest element in a sequence.

def find_smallest(sequence):

smallest_so_far = sequence[0]

smallest_pos = 0

i = 1

while i < len(sequence) :

if sequence[i] < smallest_so_far :

smallest_pos = i

smallest_so_far = sequence[i]

i += 1

return smallest_pos

1.7 State and prove a loop invariant to show that the following loop clears the list
sequence, that is, it sets all of its positions to None. Your loop invariant should
explain and relate the variables sequence and i.

i = 0

while i < len(sequence):

sequence[i] = None

i += 1

From the correctness proof of bounded linear search:

By Invariant 1.c [i is the number of iterations], after at most n iterations,
i = n and the guard will fail.

From the correctness proof of binary search (rewritten):

Let i be the number of iterations completed. Suppose i ≥ lg n. Then 2i ≥ n
and n

2i
≤ 1.

By Invariant 3.b, [high− low ≤ n
2i
], we have high− low ≤ 1 and the guard

fails.

a0

a1(n + 1)

a4

a5

a3

a2n

Tbls(n) = a0 + a1(n + 1) + a2n + a3 + max(a4, a5)
= b0 + b1n

c1(lg n + 1)

c4

c5

c3

c0

c2 lg n

Tbs(n) = c0 + c1(lg n + 1) + c2 lg n + c3 + max(c4, c5)
= d0 + d1 lg n

e2n

e0 + e1n

e5
∑n−1

i=0 (n − i − 1)

e3n + e4
∑n−1

i=0 (n − i − 1)

Tsel(n) = f1 + f2n + f3n
2

I ∃ T : D → N relating input to running time on some platform. Interpret the
codomain N as natural numbers in some unit time.

I 6 ∃ Tabsolute : N→ N relating input size to running time on some platform.
Interpret the domain N as the number of items in the list (or other structure, for
other algorithms).

I ∃ Tworst : N→ N relating input size to the maximum running time on some
platform for all inputs of the given size.

I ∃ Tbest : N→ N relating input size to the minimum running time on some
platform for all inputs of the given size.

I ∃ Texpected : N→ N relating input size to the expected value of the running time
on some platform over all inputs of the given size.

What is big-oh notation?

Big-oh is a way to categorize functions:

O(g) is the set of functions that can be bounded above by a scaled version of
g .

f (n) = O(g(n)) (or, more properly f ∈ O(g)) means

∃ c , n0 ∈ N such that ∀ n ∈ [n0,∞), f (n) ≤ cg(n)

Objections to and misconceptions of big-oh notation take forms such as

I Big-oh notation specifies only an upper bound of running time, which might be
widely imprecise.

I Big-oh notation measures only the worst case, when the best case or the typical
case might be much better.

I Big-oh ignores constants, which can greatly affect running time in practice.

I Algorithms that have the same big-oh category can have widely different running
times in practice.

I Big-oh considers only the size of the input, when in fact other attributes of the
input can greatly affect running time.

Θ(g) = {f : N→ N | ∃ c0, c1, n0 ∈ N such that ∀ n ∈ [n0,∞), c0g(n) ≤ f (n) ≤ cg(n)}

c1g(n) = 3n2

f (n) = 2n2 + 3n + 4

c0g(n) = 2n2

Algorithmic element 1

Can you jump directly to the thing you’re looking for?

Algorithmic element 2

Are you descending a binary tree of the data?

Algorithmic element 3

Do you need to touch every element in the data?

Algorithmic element 4

For every element, do you need to descend a tree, or for every element in the tree, do
you touch every element?

Algorithmic element 5

For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6

Do you need to consider all combinations of input elements?

int merge_sort_r(int sequence[], int aux[], int low, int high)

{

if (low + 1 >= high)

return 0;

else {

int compars = 0; // the number of comparisons

int midpoint = (low + high) / 2; // index to the middle of the range

int k, n;

n = high - low;

compars += merge_sort_r(sequence, aux, low, midpoint);

compars += merge_sort_r(sequence, aux, midpoint, high);

compars = merge(sequence, aux, low, high);

return compars;

}

}

Cms(n) =

{
0 if n ≤ 1
n − 1 + 2Cms(n2) otherwise

2

1 1

2

1 1

2

1 1

n
2

n
2

n
4

n
4

n
4

n
4

n

n · 0

n − 1

n
2
· 1

4 · (n
4
− 1)

2 · (n
2
− 1)

∑lg n−1
i=0 2i · (n

2i
− 1) =

∑lg n−1
i=0 n −

∑lg n−1
i=0 2i

= n lg n − n + 1

int quick_sort_r(int sequence[], int low, int high)

{

if (low + 1 >= high) return 0;

int i, j, temp;

int compars = 0;

for (i = j = low; j < high-1; j++) {

compars++;

if (sequence[j] < sequence[high-1])

{

temp = sequence[j];

sequence[j] = sequence[i];

sequence[i] = temp;

i++;

}

}

temp = sequence[i];

sequence[i] = sequence[j];

sequence[j] = temp;

return compars + quick_sort_r(sequence, low, i)

+ quick_sort_r(sequence, i+1, high);

}

1

1

1 1

11 1 1 1

n

n · 0

n − 1

4 · (n−3
4
− 1)

2 · (n−1
2
− 1)n−1

2
n−1
2

n−3
4

n−3
4

n−3
4

n−3
4

1

1

1

1

n

n − 2

n − 3

n − 1

n − 1

n − 3

n − 2

n − 4

0

(n − 1) + (n − 2) + (n − 3) + · · ·+ 1 + 0 =
n−1∑
i=1

i =
n · (n − 1)

2
=

n2 − n

2

Coming up:

Due Wednesday, Aug 31 (end of day):
Finish reading Section 1.2
(Exercises 1.(6 & 7) should have been done before class)
Take quiz, if you haven’t already.

Due Fri, Sept 2 (end of day):
Read Sections 1.(3 & 4)
Do Exercises 1.(17–18)
Take quiz

Due Thurs, Sept 8 (end of day):
Read Section 2.1
Do Exercise 1.11
Take quiz

