Chapter 5，Dynamic Programming：
－Introduction and sample problems（previous week Wednesday）
－Principles of DP（previous week Friday）
－DP algorithms，solutions to sample problems（last week Monday）
－Introduce optimal BSTs／review for test 2 （last week Wednesday）
－Test 2，not covering DP（last week Friday）
－Retrospective on Test 2 （Monday）
－Finish up optimal BSTs（Today）
－［Begin hash tables（Friday）］

Today：
－Review optimal BST definition
－The optimal－BST－building problem
－The dynamic programming solution

Why this problem?

- It connects dynamic programming with the quest for a better map.
- Its hardness is in the right places (building the table-hard; reconstructing solution-trivial).
- It is a representative of a bigger concept: What if we had more information-how would that change the problem.

Game plan:

- Understand the problem itself
- Understand the recursive characterization
- Understand the table-building algorithm

The optimal binary search tree problem:

- Assume we know all the keys $k_{0}, k_{1}, \ldots k_{n-1}$ ahead of time.
- Assume further that we know the probabilities $p_{0}, p_{1}, \ldots p_{n-1}$ of each key's lookup.
- Assume even further that we know the "miss probabilities" $q_{0}, q_{1}, \ldots q_{n}$ where q_{i} is the probability that an extraneous key falling between k_{i-1} and k_{i} will be looked up.
- We want to build a tree to minimize the expected cost of a look up, which is the total weighted depth of the tree:

$$
\sum_{i=0}^{n-1} p_{i} \operatorname{depth}\left(k_{i}\right)+\sum_{i=0}^{n} q_{i} \operatorname{depth}\left(m_{i}\right)
$$

where depth (x) is the number of nodes to be inspected on the route from the root to node x, k_{i} stands for the node containing key k_{i} [notational abuse], and m_{i} is the dummy node between keys k_{i-1} and and k_{i}.

- Note that the rules of probability require $\sum_{i=0}^{n-1} p_{i}+\sum_{i=0}^{n} q_{i}=1$

i	84	eat	24	ham	10	fox	7	rain	4
not	83	will	21	there	9	on	7	see	4
them	61	sam	19	train	9	tree	6	try	4
a	59	with	19	anywhere	8	say	5	boat	3
like	44	am	16	house	8	so	5	that	3
in	40	could	14	mouse	8	be	4	are	2
do	36	here	11	or	8	goat	4	good	2
you	34	the	11	box	7	let	4	thank	2
would	26	eggs	10	car	7	may	4	they	2
and	24	green	10	dark	7	me	4	if	1

Key or miss event combined frequency

$1 \cdot .02+1 \cdot .081$
$=.101$

1
.02 .081
$2 \cdot .02+2 \cdot .081$
$+1 \cdot .103+1 \cdot .122$
$=.427$

$$
\begin{aligned}
& 3 \cdot .02+3 \cdot .081 \\
& +2 \cdot .103+2 \cdot .122 \\
& +1 \cdot .001+1 \cdot .133+1 \cdot .107+1 \cdot .006+1 \cdot .076+1 \cdot .001 \\
& =1.057
\end{aligned}
$$


```
4\cdot.02+4 . . 081
+3\cdot.103+3\cdot.122
+2\cdot.001+2\cdot.133+2\cdot.107+2\cdot.006+2\cdot.076 + 2 . .001
+1\cdot.073 + 1\cdot.104 + 1 . .001 + 1 . .042
=1.907
```

1 a 073	1 i. 104	. 001	you . 0	2^{1}
$2 /{ }_{001}$	$\left.2 /_{107}\right\rangle_{2}$			2
			$\text { ot } .103 .122$	
		$4 \text { / }$	$\begin{aligned} & . \\ & .081 \end{aligned}$	

$$
\begin{aligned}
& 5 \cdot .02+5 \cdot .081 \\
& +4 \cdot .103+4 \cdot .122 \\
& +3 \cdot .001+3 \cdot .133+3 \cdot .107+3 \cdot .006+3 \cdot .076+3 \cdot .001 \\
& +2 \cdot .073+2 \cdot .104+2 \cdot .001+2 \cdot .042 \\
& +1 \cdot .045+1 \cdot .055 \\
& =2.857
\end{aligned}
$$


```
6 . .02 + 6 . .081
+5\cdot.103+5 .. .122
+4\cdot.001+4\cdot.133+4\cdot.107+4\cdot.006 + 4\cdot.076 + 4 \cdot.001
+3\cdot.073+3\cdot.104+3\cdot.001 + 3 . .042
+2\cdot.045+2\cdot.055
+1..05
= 3.857
```



```
4\cdot.001+3\cdot.073+4\cdot.133+2\cdot.045+4\cdot.107+3\cdot.104+4\cdot.006
+1..05
+3\cdot.001+2\cdot.055+6}\cdot.02+6\cdot.081+4\cdot.076+5\cdot.122+3\cdot.042+4\cdot.00
= 3.857
```


$$
\begin{aligned}
& 3 \cdot .001+2 \cdot .073+3 \cdot .133+1 \cdot .045+3 \cdot .107+2 \cdot .104+3 \cdot .006 \\
& +2 \cdot .001+1 \cdot .055+5 \cdot .02+5 \cdot .081+3 \cdot .076+4 \cdot .122+2 \cdot .042+3 \cdot .001 \\
& +.001+.073+.133+.045+.107+.104+.006 \\
& +.05 \\
& +.001+.055+.02+.081+.076+.122+.042+.001 \\
& =3.857
\end{aligned}
$$

in .05

Total weighted depth for a given tree (expected lookup cost):

$$
\underbrace{\sum_{i=0}^{n-1} p_{i} \operatorname{depth}\left(k_{i}\right)}_{\text {keys }}+\underbrace{\sum_{i=0}^{n} q_{i} \operatorname{depth}\left(m_{i}\right)}_{\text {misses }}
$$

Let depth $k_{k_{\mathrm{a}}}\left(k_{i}\right)$ be the depth of the node with k_{i} in the subtree rooted at node with k_{1}. For example, if k_{r} is the root of the entire tree and k_{a} is a child of the root, then

$$
\operatorname{depth}_{k_{r}}\left(k_{i}\right)=\operatorname{depth}_{k_{a}}\left(k_{i}\right)+1
$$

Then we can rewrite the total weighted depth as

$$
\underbrace{\sum_{i=0}^{r-1} p_{i} \operatorname{depth}_{k_{r}}\left(k_{i}\right)+\sum_{i=0}^{r} q_{i} \operatorname{depth}_{k_{r}}\left(m_{i}\right)}_{\text {left subtree total weighted depth (absolute) }}+p_{r}+\underbrace{\sum_{i=r+1}^{n-1} p_{i} \operatorname{depth}_{k_{r}}\left(k_{i}\right)+\sum_{i=r+1}^{n} q_{i} \operatorname{depth}_{k_{r}}\left(m_{i}\right)}_{\text {right subtree total weighted depth (absolute) }}
$$

Again, let k_{r} be the root of the entire tree and k_{a} and k_{b} be the root's children. Then

$$
\underbrace{\sum_{i=0}^{r-1} p_{i}\left(\operatorname{depth}_{k_{a}}\left(k_{i}\right)+1\right)+\sum_{i=0}^{r} q_{i}\left(\operatorname{depth}_{k_{a}}\left(m_{i}\right)+1\right)}_{\text {left subtree total weighted depth (absolute) }}+p_{r}+\underbrace{\sum_{i=r+1}^{n-1} p_{i}\left(\operatorname{depth}_{k_{b}}\left(k_{i}\right)+1\right)+\sum_{i=r+1}^{n} q_{i}\left(\operatorname{depth}_{k_{r}}\left(m_{i}\right)+1\right)}_{\text {right subtree total weighted depth (absolute) }}
$$

Convert to "relative depth":

$$
\underbrace{\sum_{i=0}^{n-1} p_{i}+\sum_{i=0}^{n} q_{i}}_{\text {total probability }}+\underbrace{\sum_{i=0}^{r-1} p_{i} \operatorname{depth}_{k_{a}}\left(k_{i}\right)+\sum_{i=0}^{r} q_{i} \operatorname{depth}_{k_{\mathrm{a}}}\left(m_{i}\right)}_{\text {left subtree total weighted depth (relative) }}+\underbrace{\sum_{i=r+1}^{n-1} p_{i} \operatorname{depth}_{k_{b}}\left(k_{i}\right)+\sum_{i=r+1}^{n} q_{i} \operatorname{depth}_{k_{r}}\left(m_{i}\right)}_{\text {right subtree total weighted depth (relative) }}
$$

Let $T W D(k)$ be the total weighted depth of the tree rooted at k (relative to k) and $T P(k)$ be the total probability of the tree rooted at k. Then

$$
T W D\left(k_{r}\right)=T P\left(k_{r}\right)+T W D\left(k_{a}\right)+T W D\left(k_{b}\right)
$$

Let $P[i][j]$ be the total probabilities of the keys and misses in the range $[i, j]$:

$$
P[i][j]=\sum_{k=i}^{j} p_{k}+\sum_{k=i}^{j+1} q_{k}
$$

Let $C[i][j]$ be the least total weighted depth of any BST composed from keys in the range $[i, j]$. The recursive characterization is

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{ll}
q_{i}+C[i+1][j] \\
C[i][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{l}
q_{i}+C[i+1][j] \\
C[j][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$q_{i}+C[i+1][j]$

$C[i][r-1]+C[r+1][j]$

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{l}
q_{i}+C[i+1][j] \\
C[i][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$$
C[i][j]= \begin{cases}2 q_{i}+p_{i}+2 q_{i+1} & \text { if } i=j \\
P[i][j]+\min \left\{\begin{array}{l}
q_{i}+C[i+1][j] \\
C[j][r-1]+C[r+1][j] \text { for } r \in(i, j) \\
C[i][j-1]+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

$$
P[i][j]= \begin{cases}q_{i}+p_{i}+q_{i+1} & \text { if } i=j \\
\left\{\begin{array}{ll}
q_{i}+p_{i}+P[i+1][j] \\
\text { or } & P[i][r-1]+p_{r}+P[r+1][j] \text { for } r \in(i, j) \\
\text { or } & P[i][j-1]+p_{j}+q_{j+1}
\end{array}\right\} & \text { if } i<j\end{cases}
$$

	0	1	2	3	4	5	6	7
k_{i}	a	do	i	in	like	not	then	you
p_{i}	.073	.045	.104	.05	.055	.103	.076	.042
q_{i}	.001	.113	.107	.006	.001	.02	.081	.122

Coming up:

Due Wed, Nov 16 (end of day)

Read Section 6.5
(No quiz on Section 6.5)
Due Fri, Nov 18 (end of day)
Read Sections 7.(1 \& 2)
Take quiz
Due Mon, Nov 21 (end of day)
Do Project 7.1 (as practice problem)
Due Mon, Nov 28 (end of day) (recommended to be done before break)
Read Section 7.3
Do Exercises 7. $(4,5,7,8)$
Take quiz
Do Optimal BST project (suggested by Monday, Nov 21)

