Chapter 7, Hash tables:

General introduction; separate chaining (Friday, Nov 18)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Open addressing (Monday before Thanksgiving)
- Hash table performance (Today)
- (Begin Chapter 8, Strings (Wednesday))

Today:

- Elements of hashtable performance
- Clustering and chaining in open addressing
- The mathematics of hash functions
- Perfect hashing

Coming up: *Do* **Open Addressing** *project* (*suggested by Friday, Dec2*)

Due **Today, Nov 28** (end of day) (recommended to have been done before break) Read Section 7.3 Do Exercises 7.(4,5,7,8) Take quiz (on Section 7.3 etc)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Due **Wed, Nov 30** (end of day) Read Section 8.1 Do Exercises 8.(4 & 5)

Due **Thurs, Dec 1** Take quiz (on Section 8.1)

Due Fri, Dec 2 Do Exercises 8.(7, 14, 20) Read Section 8.2

Find	Search the data structure for a given key
Insert	Add a new key to the data structure
Delete	Get rid of a key and fix up the data structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete

	Find	Insert	Delete
Unsorted array	$\Theta(n)$	$\Theta(1) \ [\Theta(n)]$	$\Theta(n)$
Sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$
Linked list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
Balanced BST	$\Theta(\lg n)$	$\Theta(1) \ [\Theta(\lg n)]$	$\Theta(1) \ [\Theta(\lg n)$
What we want	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\begin{array}{cccc} O(1) & c_{0} \\ O(1) & c_{0} \\ O(1) & c_{0} \\ \vdots \\ O(1) & c_{0} \end{array} \end{array} \right\} \begin{array}{c} T(n) &= (n-1)c_{0} + c_{1} + c_{2}n \\ &= (c_{0} + c_{2})n + c_{1} - c_{0} \\ &= \Theta(n) \\ \vdots \\ O(1) & c_{0} \end{array} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

$$\frac{(n+1) + n + (n-1) + \dots + 3 + 2 + 1 + \dots + 1}{m}$$

$$= \frac{m+n+(n-1) + \dots + 2 + 1}{m}$$
the initial *m* accounting for the last probe in each case
$$= \frac{m}{m} + \frac{(n+1) \cdot \frac{n}{2}}{m}$$
as an arithmetic series
$$\approx 1 + \frac{(n+1) \cdot \frac{n}{2}}{2 \cdot n}$$
since *m* is about $2 \cdot n$

$$= 1 + \frac{n+1}{4}$$
by cancellation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少々で

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

What is the probability that a miss k requires at least i probes?

Conditional probability

 $P(X \mid Y)$: What is the probability of event X in light of event Y?

$$P(X \wedge Y) = P(X) \cdot P(X \mid Y)$$

 $P(X_0 \wedge X_1 \wedge \cdots \wedge X_{N-1}) = P(X_0) \cdot P(X_1 \mid X_0) \cdot P(X_1 \mid X_0 \wedge X_1) \cdots P(X_{N-1} \mid X_0 \wedge \cdots \wedge X_{N-2})$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

The probability that a miss requires at least *i* probes:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2}$$

$$\leq \left(\frac{n}{m}\right)^{i-1} \quad \text{since } n < m$$

$$\leq \alpha^{i-1} \quad \text{by substitution}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$\sum_{i=1}^{m} i \cdot P\begin{pmatrix} \text{it takes} \\ i \text{ probes} \end{pmatrix} = \sum_{i=1}^{m} i \cdot \left(P\begin{pmatrix} \text{it takes} \\ a \text{t least } i \end{pmatrix} - P\begin{pmatrix} \text{it takes at} \\ \text{least } i+1 \\ \text{probes} \end{pmatrix} \right)$$

$$= \sum_{i=1}^{m} P\begin{pmatrix} \text{it takes} \\ a \text{t least } i \\ \text{probes} \end{pmatrix}$$
by telescoping
$$\leq \sum_{i=1}^{m} \alpha^{i-1}$$
by the previous result
$$\leq \sum_{i=1}^{\infty} \alpha^{i-1}$$
since $m < \infty$

$$= \sum_{i=0}^{\infty} \alpha^{i}$$
by a change of variable
$$= \frac{1}{1-\alpha}$$
by geometric series

Is the following assumption true for linear probing?

$$P(T[h(k)+1]
eq \texttt{null} \mid T[h(k)]
eq \texttt{null}) = rac{n-1}{m-1}$$

In general, is the following assumption true for a probing strategy?

$$P(T[\sigma(k,1)] \neq \texttt{null} \mid T[\sigma(k,0)] \neq \texttt{null}) = \frac{n-1}{m-1}$$

What is the difference between

Each array index is equally likely to be vs the hash of a given key.

Each array position is equally likely to be occupied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Linear probing is biased towards clustering:

r			
x	Number of buckets with exactly x previous buckets filled	Number of filled buckets with exactly x previous buckets filled	Probability that a bucket is filled if exactly x previous buckets are filled
0	97	48	.495
1	48	22	.458
2	22	12	.545
3	12	7	.583
4	7	4	.571
5	4	3	.75
6	3	2	.667
7	2	2	1
8	2	0	0

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

$$\frac{1}{2} \cdot \left(1 + \frac{1}{(1-\alpha)^2}\right)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

After n calls to put() with unique keys, no removals, consider **average chain length** over all keys (low is good), **percent of keys that are in their ideal location** (high is good), and **length of the longest chain** (low is good)

п		Line	ar probin	g	Quadr	atic prob	ing	Doul	ole hashir	ng
Surnames	1000	2.092	64.7%	31	1.421	75.8%	9	2.327	65.2%	31
Mountains	1360	1.568	73.8%	17	1.729	65.8%	11	1.770	73.4%	16
Mountains (height)	1360	1.932	75.1%	99	1.882	68.9%	18	1.830	72.4%	13
Chemicals	663	1.517	75.0%	16	1.729	65.5%	10	1.701	75.5%	9
Chemicals (symbol)	663	1.885	71.0%	20	1.837	66.4%	13	1.798	72.7%	12
Books	718	1.419	76.7%	8	1.659	70.0%	11	1.656	75.8%	8
Books (ISBN)	718	1.542	74.4%	21	1.670	67.8%	15	1.724	74.5%	10
Random strings	5000	1.544	77.6%	49	1.735	69.9%	37	1.598	78.1%	13
Random strings	5000	1.531	77.1%	35	1.729	69.8%	28	1.593	77.9%	12
Random strings	5000	1.643	77.5%	76	1.754	68.6%	29	1.590	78.1%	13

Hash functions should distribute the keys *uniformly* and *independently*.

Uniformity:

$$P(h(k)=i)=\frac{1}{m}$$

Independence:

$$P(h(k_1) = i) = P(h(k_1) = i | h(k_2) = j)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why do we talk about integer hashes?

▲□▶ ▲□▶ ▲三≯ ▲三≯ ▲□▶

Division method:

$$h(k) = k \mod m$$

Multiplicative method:

$$h(k) = \lfloor m(k \cdot a - \lfloor k \cdot a
floor)
floor$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

"Universal" hash (later...)

ASCII sum:

$$h(k) = \left(\sum_{i=0}^{n-1} s[i]\right)$$

String polynomial:

$$h(k) = (k[0] \cdot b^{n-1} + k[1] \cdot b^{n-2} + \dots + k[n-2] \cdot b + k[n-1]) \mod m$$

Carter-Wegman:

$$h(k) = (h_0(k[0]) + h_1(k[1]) + \dots + h_{n-1}(k[n-1])) \mod m$$
$$= \left(\sum_{i=0}^{n-1} h_i(k[i])\right) \mod m$$

▲□> <個> <=> <=> <=> <=> <=> <=> <<=>

Area codes (<i>n</i> = Division	= 303) L	Average penalty .673	Variance .808
Mid square	Indefilie Meneral Medi in marcaneta Milanaritza menanina dan araman I	1.09	1.64
Multiplicative	Lakia. Makaman ing dila dawanka wang miningkan miningkan na wang na raw 16 - ani. Amang ani, Amang duk na j	.508	.478
Fibonacci	k . ddadaaraadadoo b ba	.617	.696
Universal	hadharah dan Badali da ta darara	.578	.617

Book ISBNs (n = 718)

Division		.618	1.05
Mid square		.812	1.48
Multiplicative		.565	.954
Fibonacci	ين يراب المامانية الأراب المرابع المنافر بالمراجع الأمريخية. ومن المراجع المراجع المراجع المراجع المراجع المراجع	.544	.873
Universal		.667	1.15

Randomly gene Division	rated from [0,1000) ($n=150$) Is an all the second	Average penalty 1.36	Variance .958
Mid square	llilia di . da i da cana da anta a cana anta anta anta anta anta a	1.86	1.96
Multiplicative	I	1.34	.919
Fibonacci	I. Bachter Barran ran an an ab bhithet ann barr tabhnan nàn. Troinn ann an an a'	1.41	1.07
Universal	ﺎﻣﺪﯨﺪ	1.39	1.02

Randomly generated from $[0, 1000)$ $(n = 400)$				
Division	հեղերակել հեղերեկու վեր հայու հեղերական է եվել հայու ամեր հեր հեղապետեն վեր, են հեղ մեն հետ հետ հետ հետ	.518	1.16	
Mid square	All	1.73	3.68	
Multiplicative	k hall da saa ah allan da ah dhaladada ka saadala sa kadanaa aha nanamaa addhal in tiraadha aandaaddaadh	.405	.930	
Fibonacci	البناء الطميما مرجبتها، المتلد بنا الشقيف أنباب علمتها والتقاشية علمتالونا التأليمانية، تمثل الربينيا التأميلية تتبيير	.448	.980	
Universal	na danah beruma haliliki dan hilikada di kumaha di arandalak da atau ana dia misi misi sakat	.488	1.08	

Chemicals ($n = 663$	3)	Average penalty	Variance
ASCII sum	การการการการการการการการการการการการการก	.505	1.00
String polynomial	กรณ์แหน่งสามารถในสามารถให้สามารถให้เหม่าได้เหมาะได้ แกรแรกที่ไปสามาร์เป็นสามารถได้เหมาะได้เหมาะได้เหมาะได้เหมาะได้	.424	.805
Carter-Wegman		.800	1.63
Books (<i>n</i> = 718)			
ASCII sum		.818	1.51
String polynomial		.745	1.30
Carter-Wegman		2.06	4.08

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Randomly generate	d strings ($n = 150$)	Average penalty	Variance
ASCII sum	I i	1.32	.879
String polynomial	L	1.43	1.09
Carter-Wegman	$ \label{eq:constraint} L_{i} (a_{1}a_{2},\ldots,a_{n},a_{$	1.41	1.05
Randomly generate	d strings ($n = 400$)		
ASCII sum	1.1.0.16	.515	1.15
String polynomial	นสมิงหลายใหม่เป็นประการประการประกิณฑ์และการประกิณีก็การประการประการประการประการประการประการประการประการประการป	.425	.925
Carter-Wegman		.540	1.20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A hashing scheme must reduce the occurrence of collisions and "deal" with them when they happen.

- Separate chaining, where m < n, deals with collisions by chaining keys together in a bucket.
- Open addressing, where n < m, deals with collisions by finding an alternate location.
- Perfect hashing deals with collisions by preventing them altogether.

This topic is parallel with the *optimal BST problem*: What if we knew the keys ahead of time? What if we got to choose the hash function based on what keys we have?

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Let \mathscr{H} stand for a *class* of hash functions (a set of hash functions defined by some formula).

Let m be the number of buckets.

 ${\mathscr H}$ is universal if

$$orall k, \ell \in \mathit{Keys}, \ |\{h \in \mathscr{H} \mid h(k) = h(\ell)\}| \leq rac{|\mathscr{H}|}{m}$$

(4日) (四) (王) (王) (王)

 ${\mathscr H}$ is universal if

$$\forall k, \ell \in Keys, |\{h \in \mathscr{H} \mid h(k) = h(\ell)\}| \leq \frac{|\mathscr{H}|}{m}$$

One particular *family* of *classes* of hash functions, given p, a prime number greater than all keys, and m, the number of buckets, is denoted \mathscr{H}_{mp} :

$$\mathscr{H}_{mp} = \{ h_{ab}(k) = ((ak+b) \mod p) \mod m \mid a \in [1,p) \text{ and } b \in [0,p) \}$$

(日) (四) (王) (王) (王) (王)

Theorem \mathscr{H}_{pm} is universal.

Proof. Suppose p and m as specified earlier. Suppose $k, \ell \in Keys$, and $h_{ab} \in \mathscr{H}_{pm}$ (which implies supposing that $a \in [1, p)$ and $b \in [0, p)$). Let $r = (a \cdot k + b) \mod p$ and $s = (a \cdot \ell + b) \mod p$ Subtracting gives us

$$r-s \equiv (a \cdot k + b) - (a \cdot \ell + b) \mod p$$

 $\equiv a \cdot (k - \ell) \mod p$

Now a cannot be 0 because $a \in [1, p)$. Similarly $k - \ell$ cannot be 0, since $k \neq \ell$. Hence $a \cdot (k - \ell) \neq 0$.

Since p is prime and greater than a, k, and ℓ , it cannot be a factor of $a \cdot (k - \ell)$. In other words, $a \cdot (k - \ell) \mod p \neq 0$. By substitution, $r - s \neq 0$, and so $r \neq s$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

By another substitution, $(a \cdot k + b) \mod p \neq (a \cdot \ell + b) \mod p$.

Define the following function, given k and ℓ , which maps from (a, b) pairs to (r, s) pairs (formally, $[1, p) \times [0, p) \rightarrow [1, p) \times [0, p)$):

$$\phi_{k\ell}(a,b) = ((a \cdot k + b) \mod p, (a \cdot \ell + b) \mod p)$$

Now consider the inverse of that function.

$$\phi_{k\ell}^{-1}(r,s) = (((r-s) \cdot (k-\ell)^{-1}) \mod p), (r-ak) \mod p)$$

= (a,b)

The existence of ϕ^{-1} implies that ϕ is a one-to-one correspondence. Hence for each (a, b) pair, there is a unique (r, s) pair. Since the pair (a, b) specifies a hash function, that means that for each hash function in the family \mathscr{H}_{pm} , there is a unique (r, s) pair.

(中) (문) (문) (문) (문)

There are p-1 possible choices for a and p choices for b, so there are $p \cdot (p-1)$ hash functions in family \mathscr{H}_{pm} . Likewise there are p choices for r, and for each r there are p-1 choices for s (since $s \neq r$). Thus we can partition the set \mathscr{H}_{pm} into p subsets by r value, each subset having p-1 hash functions. For a given r, at most one out of every m can have an s that is equivalent to $r \mod m$, in other words, at most $\frac{p-1}{m}$ hash functions. Now sum that for all p of the subsets of \mathscr{H}_{pm} , and we find that the number of hash functions for which k and ℓ collide are

$$p \cdot rac{p-1}{m} = rac{p \cdot (p-1)}{m} = rac{|\mathscr{H}_{pm}|}{m}$$

(日) (四) (王) (王) (王) (王)

Therefore \mathscr{H}_{pm} is universal by definition. \Box

Theorem [Probability of any collisions.] If Keys is a set of keys, $m = |Keys|^2$, p is a prime greater than all keys, and $h \in \mathscr{H}_{pm}$, then the probability that any two distinct keys collide in h is less than $\frac{1}{2}$.

Proof. Suppose we have a set Keys, $m = |Keys|^2$, p is a prime greater than all keys, and $h \in \mathscr{H}_{pm}$.

Consider the number of pairs of unique keys. The number of pairs of keys is

$$\binom{n}{2} = \frac{n!}{2! \cdot (n-2)!} = \frac{n!}{2 \cdot (n-2)!} = \frac{n \cdot (n-1) \cdot (n-2)!}{2 \cdot (n-2)!} = \frac{n \cdot (n-1)}{2}$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

Since \mathscr{H}_{pm} is universal, each pair collides with probability $\frac{1}{m}$. Multiply that by the number of pairs, and the expected number of collisions is

$$\frac{n \cdot (n-1)}{2} \cdot \frac{1}{m} < \frac{n^2}{2} \cdot \frac{1}{m} \quad \text{since } n \cdot (n-1) < n^2$$
$$= \frac{n^2}{2} \cdot \frac{1}{n^2} \quad \text{since } m = n^2$$
$$= \frac{1}{2} \qquad \text{by cancelling } n^2$$

With the expected number of collisions less than one half, the probability there are any collisions is also less than $\frac{1}{2}$. \Box

(日) (四) (里) (里)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Coming up: *Do* **Open Addressing** *project* (*suggested by Friday, Dec2*)

Due **Today, Nov 28** (end of day) (recommended to have been done before break) Read Section 7.3 Do Exercises 7.(4,5,7,8) Take quiz (on Section 7.3 etc)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Due **Wed, Nov 30** (end of day) Read Section 8.1 Do Exercises 8.(4 & 5)

Due **Thurs, Dec 1** Take quiz (on Section 8.1)

Due Fri, Dec 2 Do Exercises 8.(7, 14, 20) Read Section 8.2