Chapter 7, Hash tables:

- General introduction; separate chaining (Friday, Nov 18)
- Open addressing (Monday before Thanksgiving)
- Hash table performance (Today)
- (Begin Chapter 8, Strings (Wednesday))

Today:

- Elements of hashtable performance
- Clustering and chaining in open addressing
- The mathematics of hash functions
- Perfect hashing


## Coming up:

Do Open Addressing project (suggested by Friday, Dec2)
Due Today, Nov 28 (end of day) (recommended to have been done before break)
Read Section 7.3
Do Exercises 7. $(4,5,7,8)$
Take quiz (on Section 7.3 etc)
Due Wed, Nov 30 (end of day)
Read Section 8.1
Do Exercises 8.(4 \& 5)
Due Thurs, Dec 1
Take quiz (on Section 8.1)
Due Fri, Dec 2
Do Exercises 8.(7, 14, 20)
Read Section 8.2

```
Find Search the data structure for a given key
Insert
Delete Get rid of a key and fix up the data structure
containsKey() Find
get()
put()
remove() Find + delete
```

Find Insert Delete

Unsorted array

Sorted array
Linked list

Balanced BST

What we want
$\Theta(n) \quad \Theta(1)[\Theta(n)] \quad \Theta(n)$
$\Theta(\lg n) \quad \Theta(n) \quad \Theta(n)$
$\Theta(n) \quad \Theta(1) \quad \Theta(1)$
$\Theta(\lg n) \quad \Theta(1)[\Theta(\lg n)] \quad \Theta(1)[\Theta(\lg n)]$
$\Theta(1) \quad \Theta(1)$
$\Theta(1)$

## 

$$
\begin{array}{rlr}
\frac{(n+1)+n+(n-1)+\cdots+3+2+\overbrace{1+\cdots+1}^{m-n}}{m} \\
& =\frac{m+n+(n-1)+\cdots+2+1}{m} & \text { the initial } m \text { accounting for the } \\
& =\frac{m}{m}+\frac{(n+1) \cdot \frac{n}{2}}{m} & \text { last probe in each case } \\
& \approx 1+\frac{(n+1) \cdot \frac{n}{2}}{2 \cdot n} & \text { as an arithmetic series } \\
& =1+\frac{n+1}{4} & \text { sy cancellation } m \text { is about } 2 \cdot n
\end{array}
$$

$\square$

$$
\frac{\left[\left(s_{0}+1\right)+s_{0}+\left(s_{0}-1\right)+\cdots+2\right]+\cdots+1+\cdots 1}{m}=1+\frac{\sum_{i=0}^{\gamma-1} \sum_{j=1}^{s_{i}} j}{m}
$$

What is the probability that a miss $k$ requires at least $i$ probes?


Conditional probability
$P(X \mid Y)$ : What is the probability of event $X$ in light of event $Y$ ?

$$
\begin{aligned}
P(X \wedge Y) & =P(X) \cdot P(X \mid Y) \\
P\left(X_{0} \wedge X_{1} \wedge \cdots \wedge X_{N-1}\right) & =P\left(X_{0}\right) \cdot P\left(X_{1} \mid X_{0}\right) \cdot P\left(X_{1} \mid X_{0} \wedge X_{1}\right) \cdots P\left(X_{N-1} \mid X_{0} \wedge \cdots \wedge X_{N-2}\right)
\end{aligned}
$$



$$
P(T[h(k)+1] \neq \operatorname{null} \mid T[h(k)] \neq \text { null })=\frac{n-1}{m-1}
$$

The probability that a miss requires at least $i$ probes:

$$
\begin{array}{rlr}
\frac{n}{m} \cdot \frac{n-1}{m-1} & \cdots \frac{n-i+2}{m-i+2} & \\
& \leq\left(\frac{n}{m}\right)^{i-1} & \\
& \text { since } n<m \\
& \leq \alpha^{i-1} & \\
\text { by substitution }
\end{array}
$$

$$
\begin{array}{rlrl}
\sum_{i=1}^{m} i \cdot P\binom{\text { it takes }}{i \text { probes }} & =\sum_{i=1}^{m} i \cdot\left(P\left(\begin{array}{c}
\text { it takes } \\
\text { at least } i \\
\text { probes }
\end{array}\right)-P\left(\begin{array}{c}
\text { it takes at } \\
\text { least } i+1 \\
\text { probes }
\end{array}\right)\right) & \\
& =\sum_{i=1}^{m} P\left(\begin{array}{cc}
\text { it takes } \\
\text { at least } i \\
\text { probes }
\end{array}\right) & & \text { by telescoping } \\
& \leq \sum_{i=1}^{m} \alpha^{i-1} & & \text { by the previous result } \\
& \leq \sum_{i=1}^{\infty} \alpha^{i-1} & & \text { since } m<\infty \\
& =\sum_{i=0}^{\infty} \alpha^{i} & & \text { by a change of variable } \\
& =\frac{1}{1-\alpha} & & \text { by geometric series }
\end{array}
$$

Is the following assumption true for linear probing?

$$
P(T[h(k)+1] \neq \operatorname{null} \mid T[h(k)] \neq \mathrm{null})=\frac{n-1}{m-1}
$$

In general, is the following assumption true for a probing strategy?

$$
P(T[\sigma(k, 1)] \neq \operatorname{null} \mid T[\sigma(k, 0)] \neq \operatorname{null})=\frac{n-1}{m-1}
$$

What is the difference between

Each array index is equally likely to be the hash of a given key.

Each array position is equally likely to be occupied.

Linear probing is biased towards clustering:

| x | Number of buckets with exactly $x$ previous buckets filled | Number of filled buckets with exactly $x$ previous buckets filled | Probability that a bucket is filled if exactly $x$ previous buckets are filled. |
| :---: | :---: | :---: | :---: |
| 0 | 97 | 48 | thed. 495 |
| 1 | 48 | 22 | . 458 |
| 2 | 22 | 12 | . 545 |
| 3 | 12 | 7 | . 583 |
| 4 | 7 | 4 | . 571 |
| 5 | 4 | 3 | . 75 |
| 6 | 3 | 2 | . 667 |
| 7 | 2 | 2 | 1 |
| 8 | 2 | 0 | 0 |

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

$$
\frac{1}{2} \cdot\left(1+\frac{1}{(1-\alpha)^{2}}\right)
$$

After $n$ calls to put () with unique keys, no removals, consider average chain length over all keys (low is good), percent of keys that are in their ideal location (high is good), and length of the longest chain (low is good)
n

| Surnames | 1000 | 2.092 | $64.7 \%$ | 31 |
| :--- | :---: | :---: | :---: | :---: |
| Mountains | 1360 | 1.568 | $73.8 \%$ | 17 |
| Mountains (height) | 1360 | 1.932 | $75.1 \%$ | 99 |
| Chemicals | 663 | 1.517 | $75.0 \%$ | 16 |
| Chemicals (symbol) | 663 | 1.885 | $71.0 \%$ | 20 |
| Books | 718 | 1.419 | $76.7 \%$ | 8 |
| Books (ISBN) | 718 | 1.542 | $74.4 \%$ | 21 |
| Random strings | 5000 | 1.544 | $77.6 \%$ | 49 |
| Random strings | 5000 | 1.531 | $77.1 \%$ | 35 |
| Random strings | 5000 | 1.643 | $77.5 \%$ | 76 |

Quadratic probing

| 1.421 | $75.8 \%$ | 9 | 2.327 | $65.2 \%$ | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.729 | $65.8 \%$ | 11 | 1.770 | $73.4 \%$ | 16 |
| 1.882 | $68.9 \%$ | 18 | 1.830 | $72.4 \%$ | 13 |
| 1.729 | $65.5 \%$ | 10 | 1.701 | $75.5 \%$ | 9 |
| 1.837 | $66.4 \%$ | 13 | 1.798 | $72.7 \%$ | 12 |
| 1.659 | $70.0 \%$ | 11 | 1.656 | $75.8 \%$ | 8 |
| 1.670 | $67.8 \%$ | 15 | 1.724 | $74.5 \%$ | 10 |
| 1.735 | $69.9 \%$ | 37 | 1.598 | $78.1 \%$ | 13 |
| 1.729 | $69.8 \%$ | 28 | 1.593 | $77.9 \%$ | 12 |
| 1.754 | $68.6 \%$ | 29 | 1.590 | $78.1 \%$ | 13 |

Hash functions should distribute the keys uniformly and independently.
Uniformity:

$$
P(h(k)=i)=\frac{1}{m}
$$

Independence:

$$
P\left(h\left(k_{1}\right)=i\right)=P\left(h\left(k_{1}\right)=i \mid h\left(k_{2}\right)=j\right)
$$

Why do we talk about integer hashes?


Division method:

$$
h(k)=k \quad \bmod m
$$

Middle square method (see code)
Multiplicative method:

$$
h(k)=\lfloor m(k \cdot a-\lfloor k \cdot a\rfloor)\rfloor
$$

"Universal" hash (later...)

ASCII sum:

$$
h(k)=\left(\sum_{i=0}^{n-1} s[i]\right)
$$

String polynomial:

$$
h(k)=\left(k[0] \cdot b^{n-1}+k[1] \cdot b^{n-2}+\cdots+k[n-2] \cdot b+k[n-1]\right) \quad \bmod m
$$

Carter-Wegman:

$$
\begin{aligned}
h(k) & =\left(h_{0}(k[0])+h_{1}(k[1])+\cdots+h_{n-1}(k[n-1])\right) \bmod m \\
& =\left(\sum_{i=0}^{n-1} h_{i}(k[i])\right) \bmod m
\end{aligned}
$$

| Area codes ( $n=303$ ) |  | Average penalty | Variance |
| :---: | :---: | :---: | :---: |
| Division |  | . 673 | . 808 |
| Mid square |  | 1.09 | 1.64 |
| Multiplicative |  | . 508 | . 478 |
| Fibonacci |  | . 617 | . 696 |
| Universal |  | . 578 | . 617 |

Book ISBNs $(n=718)$
Division

Mid square


Fibonacci 1:873

Universa
 .667

| Randomly generated from $[0,1000)(n=150)$ |  | Average penalty | Variance |
| :---: | :---: | :---: | :---: |
| Division |  | 1.36 | 958 |
| Mid square |  | 1.86 | 1.96 |
| Multiplicative |  | 1.34 | . 919 |
| Fibonacci |  | 1.41 | 1.07 |
| Universal |  | 1.39 | 1.02 |
| Randomly generated from $[0,1000)(n=400)$ |  |  |  |
| Division |  | . 518 | 1.16 |
| Mid square |  | 1.73 | 3.68 |
| Multiplicative | 1: | . 405 | . 930 |
| Fibonacci |  | . 448 | . 980 |
| Universal |  | . 488 | 1.08 |

Chemicals ( $n=663$ )


String polynomial
Carter-Wegman

## Books ( $n=718$ )

ASCII sum




| Randomly generated strings ( $n=150$ ) | Average penalty | Variance |
| :---: | :---: | :---: |
|  | 1.32 | . 879 |
|  | 1.43 | 1.09 |
|  | 1.41 | 1.05 |
| Randomly generated strings ( $n=400$ ) |  |  |
|  | . 515 | 1.15 |
|  | . 425 | . 925 |
| Carter-Wegman I .... ... | . 540 | 1.20 |

A hashing scheme must reduce the occurrence of collisions and "deal" with them when they happen.

- Separate chaining, where $m<n$, deals with collisions by chaining keys together in a bucket.
- Open addressing, where $n<m$, deals with collisions by finding an alternate location.
- Perfect hashing deals with collisions by preventing them altogether.

This topic is parallel with the optimal BST problem: What if we knew the keys ahead of time? What if we got to choose the hash function based on what keys we have?


Let $\mathscr{H}$ stand for a class of hash functions（a set of hash functions defined by some formula）．

Let $m$ be the number of buckets．
$\mathscr{H}$ is universal if
$\forall k, \ell \in$ Keys，$|\{h \in \mathscr{H} \mid h(k)=h(\ell)\}| \leq \frac{|\mathscr{H}|}{m}$
$\mathscr{H}$ is universal if

$$
\forall k, \ell \in \text { Keys, } \quad|\{h \in \mathscr{H} \mid h(k)=h(\ell)\}| \leq \frac{|\mathscr{H}|}{m}
$$

One particular family of classes of hash functions, given $p$, a prime number greater than all keys, and $m$, the number of buckets, is denoted $\mathscr{H}_{m p}$ :

$$
\mathscr{H}_{m p}=\left\{h_{a b}(k)=((a k+b) \bmod p) \bmod m \mid a \in[1, p) \text { and } b \in[0, p)\right\}
$$

Theorem $\mathscr{H}_{p m}$ is universal.
Proof. Suppose $p$ and $m$ as specified earlier. Suppose $k, \ell \in$ Keys, and $h_{a b} \in \mathscr{H}_{p m}$ (which implies supposing that $a \in[1, p$ ) and $b \in[0, p)$ ).
Let $r=(a \cdot k+b) \bmod p$ and $s=(a \cdot \ell+b) \bmod p$
Subtracting gives us

$$
\begin{aligned}
r-s & \equiv(a \cdot k+b)-(a \cdot \ell+b) & & \bmod p \\
& \equiv a \cdot(k-\ell) & & \bmod p
\end{aligned}
$$

Now a cannot be 0 because $a \in[1, p)$. Similarly $k-\ell$ cannot be 0 , since $k \neq \ell$. Hence a $\cdot(k-\ell) \neq 0$.
Since $p$ is prime and greater than $a, k$, and $\ell$, it cannot be a factor of $a \cdot(k-\ell)$. In other words, $a \cdot(k-\ell) \bmod p \neq 0$. By substitution, $r-s \neq 0$, and so $r \neq s$.
By another substitution, $(a \cdot k+b) \bmod p \neq(a \cdot \ell+b) \bmod p$.

Define the following function, given $k$ and $\ell$, which maps from $(a, b)$ pairs to $(r, s)$ pairs $($ formally, $[1, p) \times[0, p) \rightarrow[1, p) \times[0, p)$ ):

$$
\phi_{k \ell}(a, b)=((a \cdot k+b) \quad \bmod p,(a \cdot \ell+b) \bmod p)
$$

Now consider the inverse of that function.

$$
\begin{aligned}
\phi_{k \ell}^{-1}(r, s) & \left.=\left(\left((r-s) \cdot(k-\ell)^{-1}\right) \bmod p\right),(r-a k) \bmod p\right) \\
& =(a, b)
\end{aligned}
$$

The existence of $\phi^{-1}$ implies that $\phi$ is a one-to-one correspondence. Hence for each $(a, b)$ pair, there is a unique $(r, s)$ pair. Since the pair $(a, b)$ specifies a hash function, that means that for each hash function in the family $\mathscr{H}_{p m}$, there is a unique $(r, s)$ pair.

There are $p-1$ possible choices for $a$ and $p$ choices for $b$, so there are $p \cdot(p-1)$ hash functions in family $\mathscr{H}_{p m}$. Likewise there are $p$ choices for $r$, and for each $r$ there are $p-1$ choices for $s$ (since $s \neq r$ ). Thus we can partition the set $\mathscr{H}_{p m}$ into $p$ subsets by $r$ value, each subset having $p-1$ hash functions. For a given $r$, at most one out of every $m$ can have an $s$ that is equivalent to $r$ mod $m$, in other words, at most $\frac{p-1}{m}$ hash functions.
Now sum that for all $p$ of the subsets of $\mathscr{H}_{p m}$, and we find that the number of hash functions for which $k$ and $\ell$ collide are

$$
p \cdot \frac{p-1}{m}=\frac{p \cdot(p-1)}{m}=\frac{\left|\mathscr{H}_{p m}\right|}{m}
$$

Therefore $\mathscr{H}_{p m}$ is universal by definition.

Theorem [Probability of any collisions.] If Keys is a set of keys, $m=\mid$ Keys $\left.\right|^{2}, p$ is a prime greater than all keys, and $h \in \mathscr{H}_{p m}$, then the probability that any two distinct keys collide in $h$ is less than $\frac{1}{2}$.

Proof. Suppose we have a set Keys, $m=\mid$ Keys $\left.\right|^{2}$, $p$ is a prime greater than all keys, and $h \in \mathscr{H}_{p m}$.
Consider the number of pairs of unique keys. The number of pairs of keys is

$$
\binom{n}{2}=\frac{n!}{2!\cdot(n-2)!}=\frac{n!}{2 \cdot(n-2)!}=\frac{n \cdot(n-1) \cdot(n-2)!}{2 \cdot(n-2)!}=\frac{n \cdot(n-1)}{2}
$$

Since $\mathscr{H}_{p m}$ is universal, each pair collides with probability $\frac{1}{m}$. Multiply that by the number of pairs, and the expected number of collisions is

$$
\begin{aligned}
\frac{n \cdot(n-1)}{2} \cdot \frac{1}{m} & <\frac{n^{2}}{2} \cdot \frac{1}{m} & & \text { since } n \cdot(n-1)<n^{2} \\
& =\frac{n^{2}}{2} \cdot \frac{1}{n^{2}} & & \text { since } m=n^{2} \\
& =\frac{1}{2} & & \text { by cancelling } n^{2}
\end{aligned}
$$

With the expected number of collisions less than one half, the probability there are any collisions is also less than $\frac{1}{2}$.

$$
h(k)=(93,0) \in \mathscr{H}_{10110}
$$



## Coming up:

Do Open Addressing project (suggested by Friday, Dec2)
Due Today, Nov 28 (end of day) (recommended to have been done before break)
Read Section 7.3
Do Exercises 7. $(4,5,7,8)$
Take quiz (on Section 7.3 etc)
Due Wed, Nov 30 (end of day)
Read Section 8.1
Do Exercises 8.(4 \& 5)
Due Thurs, Dec 1
Take quiz (on Section 8.1)
Due Fri, Dec 2
Do Exercises 8.(7, 14, 20)
Read Section 8.2

