
Chapter 7, Hash tables:

I General introduction; separate chaining (Friday, Nov 18)

I Open addressing (Monday before Thanksgiving)

I Hash table performance (Today)

I (Begin Chapter 8, Strings (Wednesday))

Today:

I Elements of hashtable performance

I Clustering and chaining in open addressing

I The mathematics of hash functions

I Perfect hashing



Coming up:
Do Open Addressing project (suggested by Friday, Dec2)

Due Today, Nov 28 (end of day) (recommended to have been done before
break)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz (on Section 7.3 etc)

Due Wed, Nov 30 (end of day)
Read Section 8.1
Do Exercises 8.(4 & 5)

Due Thurs, Dec 1
Take quiz (on Section 8.1)

Due Fri, Dec 2
Do Exercises 8.(7, 14, 20)
Read Section 8.2



Find Search the data structure for a given key

Insert Add a new key to the data structure

Delete Get rid of a key and fix up the data structure

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete



Find Insert Delete

Unsorted array Θ(n) Θ(1) [Θ(n)] Θ(n)

Sorted array Θ(lg n) Θ(n) Θ(n)

Linked list Θ(n) Θ(1) Θ(1)

Balanced BST Θ(lg n) Θ(1) [Θ(lg n)] Θ(1) [Θ(lg n)]

What we want Θ(1) Θ(1) Θ(1)



O(1) c0
O(1) c0
O(1) c0

...
O(1) c0

rehash −→ O(n) c1 + c2n
O(1) c0

...
O(1) c0



T (n) = (n − 1)c0 + c1 + c2n
= (c0 + c2)n + c1 − c0
= Θ(n)





(n + 1) + n + (n − 1) + · · ·+ 3 + 2 +

m−n︷ ︸︸ ︷
1 + · · ·+ 1

m

=
m + n + (n − 1) + · · ·+ 2 + 1

m

the initial m accounting for the
last probe in each case

=
m

m
+

(n + 1) · n2
m

as an arithmetic series

≈ 1 +
(n + 1) · n2

2 · n
since m is about 2 · n

= 1 +
n + 1

4
by cancellation



[(s0 + 1) + s0 + (s0 − 1) + · · ·+ 2] + · · ·+ 1 + · · · 1
m

= 1 +

∑γ−1
i=0

∑si
j=1 j

m



What is the probability that a miss k requires at least i probes?

· · ·
h(k) ↑ ↑ h(k) + i − 1

h(k) + 1 h(k) + i − 2

Conditional probability
P(X | Y ): What is the probability of event X in light of event Y ?

P(X ∧ Y ) = P(X ) · P(X | Y )

P(X0 ∧ X1 ∧ · · · ∧ XN−1) = P(X0) · P(X1 | X0) · P(X1 | X0 ∧ X1) · · ·P(XN−1 | X0 ∧ · · · ∧ XN−2)



· · ·
h(k) ↑ ↑ h(k) + i − 1

h(k) + 1 h(k) + i − 2

P(T [h(k) + 1] 6= null | T [h(k)] 6= null) =
n − 1

m − 1

The probability that a miss requires at least i probes:

n

m
· n − 1

m − 1
· · · n − i + 2

m − i + 2

≤
( n

m

)i−1
since n < m

≤ αi−1 by substitution



m∑
i=1

i · P
(
it takes
i probes

)
=

m∑
i=1

i ·
(
P

(
it takes
at least i
probes

)
− P

(
it takes at
least i + 1
probes

))

=
m∑
i=1

P

(
it takes
at least i
probes

)
by telescoping

≤
m∑
i=1

αi−1 by the previous result

≤
∞∑
i=1

αi−1 since m <∞

=
∞∑
i=0

αi by a change of variable

=
1

1− α
by geometric series



Is the following assumption true for linear probing?

P(T [h(k) + 1] 6= null | T [h(k)] 6= null) =
n − 1

m − 1

In general, is the following assumption true for a probing strategy?

P(T [σ(k , 1)] 6= null | T [σ(k, 0)] 6= null) =
n − 1

m − 1

What is the difference between

Each array index is Each array position is
equally likely to be vs equally likely to be
the hash of a given key. occupied.



Linear probing is biased towards clustering:

x
Number of buckets with exactly
x previous buckets filled

Number of filled buckets with
exactly x previous buckets filled

Probability that a bucket is filled
if exactly x previous buckets are
filled.

0 97 48 .495
1 48 22 .458
2 22 12 .545
3 12 7 .583
4 7 4 .571
5 4 3 .75
6 3 2 .667
7 2 2 1
8 2 0 0

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

1

2
·
(

1 +
1

(1− α)2

)



After n calls to put() with unique keys, no removals, consider average chain length
over all keys (low is good), percent of keys that are in their ideal location (high is
good), and length of the longest chain (low is good)

n Linear probing Quadratic probing Double hashing

Surnames 1000 2.092 64.7% 31 1.421 75.8% 9 2.327 65.2% 31
Mountains 1360 1.568 73.8% 17 1.729 65.8% 11 1.770 73.4% 16
Mountains (height) 1360 1.932 75.1% 99 1.882 68.9% 18 1.830 72.4% 13
Chemicals 663 1.517 75.0% 16 1.729 65.5% 10 1.701 75.5% 9
Chemicals (symbol) 663 1.885 71.0% 20 1.837 66.4% 13 1.798 72.7% 12
Books 718 1.419 76.7% 8 1.659 70.0% 11 1.656 75.8% 8
Books (ISBN) 718 1.542 74.4% 21 1.670 67.8% 15 1.724 74.5% 10
Random strings 5000 1.544 77.6% 49 1.735 69.9% 37 1.598 78.1% 13
Random strings 5000 1.531 77.1% 35 1.729 69.8% 28 1.593 77.9% 12
Random strings 5000 1.643 77.5% 76 1.754 68.6% 29 1.590 78.1% 13



Hash functions should distribute the keys uniformly and independently.

Uniformity:

P(h(k) = i) =
1

m

Independence:

P(h(k1) = i) = P(h(k1) = i | h(k2) = j)



Why do we talk about integer hashes?

h

String k

h

1

2

3
h

int h(k)

bad string hash

good string hash

good int hash



Division method:

h(k) = k mod m

Middle square method (see code)

Multiplicative method:

h(k) = bm(k · a− bk · ac)c

“Universal” hash (later. . . )



ASCII sum:

h(k) =

(
n−1∑
i=0

s[i ]

)

String polynomial:

h(k) = (k[0] · bn−1 + k[1] · bn−2 + · · ·+ k[n − 2] · b + k[n − 1]) mod m

Carter-Wegman:

h(k) = (h0(k[0]) + h1(k[1]) + · · ·+ hn−1(k[n − 1])) mod m

=
(∑n−1

i=0 hi (k[i ])
)

mod m



Average
Area codes (n = 303) penalty Variance
Division .673 .808

Mid square 1.09 1.64
Multiplicative .508 .478
Fibonacci .617 .696
Universal .578 .617

Book ISBNs (n = 718)

Division .618 1.05

Mid square .812 1.48

Multiplicative .565 .954

Fibonacci .544 .873

Universal .667 1.15



Average
Randomly generated from [0, 1000) (n = 150) penalty Variance
Division 1.36 .958

Mid square 1.86 1.96
Multiplicative 1.34 .919
Fibonacci 1.41 1.07
Universal 1.39 1.02

Randomly generated from [0, 1000) (n = 400)

Division .518 1.16

Mid square 1.73 3.68

Multiplicative .405 .930

Fibonacci .448 .980

Universal .488 1.08



Average
Chemicals (n = 663) penalty Variance

ASCII sum .505 1.00

String polynomial .424 .805

Carter-Wegman .800 1.63

Books (n = 718)

ASCII sum .818 1.51

String polynomial .745 1.30

Carter-Wegman 2.06 4.08



Average
Randomly generated strings (n = 150) penalty Variance

ASCII sum 1.32 .879

String polynomial 1.43 1.09

Carter-Wegman 1.41 1.05

Randomly generated strings (n = 400)

ASCII sum .515 1.15

String polynomial .425 .925

Carter-Wegman .540 1.20



A hashing scheme must reduce the occurrence of collisions and “deal” with them when
they happen.

I Separate chaining, where m < n, deals with collisions by chaining keys together in
a bucket.

I Open addressing, where n < m, deals with collisions by finding an alternate
location.

I Perfect hashing deals with collisions by preventing them altogether.

This topic is parallel with the optimal BST problem: What if we knew the keys ahead
of time? What if we got to choose the hash function based on what keys we have?



g ◦ f (x)

f (x)

g(x)

Let H stand for a class of hash functions (a
set of hash functions defined by some formula).

Let m be the number of buckets.

H is universal if

∀ k , ` ∈ Keys, |{h ∈H | h(k) = h(`)}| ≤ |H |
m



H is universal if

∀ k , ` ∈ Keys, |{h ∈H | h(k) = h(`)}| ≤ |H |
m

One particular family of classes of hash functions, given p, a prime number greater
than all keys, and m, the number of buckets, is denoted Hmp:

Hmp = { hab(k) = ((ak + b) mod p) mod m | a ∈ [1, p) and b ∈ [0, p)}



Theorem Hpm is universal.

Proof. Suppose p and m as specified earlier. Suppose k, ` ∈ Keys, and
hab ∈Hpm (which implies supposing that a ∈ [1, p) and b ∈ [0, p)).
Let r = (a · k + b) mod p and s = (a · `+ b) mod p
Subtracting gives us

r − s ≡ (a · k + b)− (a · `+ b) mod p
≡ a · (k − `) mod p

Now a cannot be 0 because a ∈ [1, p). Similarly k − ` cannot be 0, since
k 6= `. Hence a · (k − `) 6= 0.
Since p is prime and greater than a, k, and `, it cannot be a factor of a ·(k−`).
In other words, a · (k − `) mod p 6= 0. By substitution, r − s 6= 0, and so
r 6= s.
By another substitution, (a · k + b) mod p 6= (a · `+ b) mod p.



Define the following function, given k and `, which maps from (a, b) pairs to
(r , s) pairs (formally, [1, p)× [0, p)→ [1, p)× [0, p)):

φk`(a, b) = ((a · k + b) mod p, (a · `+ b) mod p)

Now consider the inverse of that function.

φ−1k` (r , s) = (((r − s) · (k − `)−1) mod p), (r − ak) mod p)
= (a, b)

The existence of φ−1 implies that φ is a one-to-one correspondence. Hence
for each (a, b) pair, there is a unique (r , s) pair. Since the pair (a, b) specifies
a hash function, that means that for each hash function in the family Hpm,
there is a unique (r , s) pair.



There are p−1 possible choices for a and p choices for b, so there are p ·(p−1)
hash functions in family Hpm. Likewise there are p choices for r , and for each
r there are p − 1 choices for s (since s 6= r). Thus we can partition the set
Hpm into p subsets by r value, each subset having p − 1 hash functions.
For a given r , at most one out of every m can have an s that is equivalent to
r mod m, in other words, at most p−1

m hash functions.
Now sum that for all p of the subsets of Hpm, and we find that the number
of hash functions for which k and ` collide are

p · p − 1

m
=

p · (p − 1)

m
=
|Hpm|
m

Therefore Hpm is universal by definition. �



Theorem [Probability of any collisions.] If Keys is a set of keys, m = |Keys|2, p is a
prime greater than all keys, and h ∈Hpm, then the probability that any two distinct
keys collide in h is less than 1

2 .

Proof. Suppose we have a set Keys, m = |Keys|2, p is a prime greater than
all keys, and h ∈Hpm.
Consider the number of pairs of unique keys. The number of pairs of keys is(

n

2

)
=

n!

2! · (n − 2)!
=

n!

2 · (n − 2)!
=

n · (n − 1) ·����(n − 2)!

2 ·����(n − 2)!
=

n · (n − 1)

2



Since Hpm is universal, each pair collides with probability 1
m . Multiply that by

the number of pairs, and the expected number of collisions is

n·(n−1)
2 · 1

m < n2

2 ·
1
m since n · (n − 1) < n2

= n2

2 ·
1
n2

since m = n2

= 1
2 by cancelling n2

With the expected number of collisions less than one half, the probability there
are any collisions is also less than 1

2 . �



53

73 68 39

78 88

65 94

85

95

h1(k) = (0, 0) ∈H101 0

h2(k) = (56, 15) ∈H101 9

h3(k) = (47, 22) ∈H101 4

h6(k) = (1, 100) ∈H101 4

h7(k) = (0, 0) ∈H101 0

h8(k) = (0, 0) ∈H101 0

h(k) = (93, 0) ∈H101 10



Coming up:
Do Open Addressing project (suggested by Friday, Dec2)

Due Today, Nov 28 (end of day) (recommended to have been done before
break)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz (on Section 7.3 etc)

Due Wed, Nov 30 (end of day)
Read Section 8.1
Do Exercises 8.(4 & 5)

Due Thurs, Dec 1
Take quiz (on Section 8.1)

Due Fri, Dec 2
Do Exercises 8.(7, 14, 20)
Read Section 8.2


