
Chapter 6, Hash tables:

I General introduction; separate chaining (Today)

I Open addressing (next week Monday)

I Hash table performance (Monday after Thanksgiving)

Today:

I A few test 2 comments

I The story of the Map ADT

I Goals and terminology of the unit

I Separate chaining implementation

I Variables and metrics of performance



Find Search the data structure for a given key

Insert Add a new key to the data structure

Delete Get rid of a key and fix up the data structure

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete



Find Insert Delete

Unsorted array Θ(n) Θ(1) [Θ(n)] Θ(n)

Sorted array Θ(lg n) Θ(n) Θ(n)

Linked list Θ(n) Θ(1) Θ(1)

Balanced BST Θ(lg n) Θ(1) [Θ(lg n)] Θ(1) [Θ(lg n)]

What we want Θ(1) Θ(1) Θ(1)



keykey

0

h1(k)

mod m

h(k)

0 m

number in [0,∞)

∞

h1(k)

number in [0,m)



Separate chaining: n
m < α where α > 1

key

Augustus

Tiberius

Caligula

Claudius

Nero

Galba

Otho Vitellius Vespasian

Titus

Domitian

Nerva

Trajan

Hadrian

Antoninus Pius

Marcus Aurleius Commodus

h(k)



Open addressing: n
m < α where α < 1

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I

A D E G F H B C J I A D E G F H B C J I



Unit agenda:

I Solution 1: Separate chaining (plus basic concepts and terminology). (Today)

I Solution 2: Open addressing. (Next week Monday)

I All about hash functions. (Next week Wednesday)

I Solution 3: Perfect hashing. (Monday after next)

I Looking carefully at performance. (Wednesday after next)



Hash table terminology:

I Hash table: A data structure, not an ADT . . .

I Bucket: A position in the (main) array, or, abstractly, an index in the range [0,m).

I Hash function: A function from keys to buckets.

I Collision: When two keys are hashed to the same bucket.

I Chain: A sequence of keys that needs to be searched through to find a given key.

I Load factor (α): An upper bound on the ratio of keys to buckets.



Factors in best vs worst vs expected case:

I State of the table

I Length of the bucket

I Position of key in the bucket.

Parameters that can be adjusted for engineering a hash table:

I Load factor α

I Rehash strategy

I Hash function



O(1) c0
O(1) c0
O(1) c0

...
O(1) c0

rehash −→ O(n) c1 + c2n
O(1) c0

...
O(1) c0



T (n) = (n − 1)c0 + c1 + c2n
= (c0 + c2)n + c1 − c0
= Θ(n)



Hash functions should distribute the keys uniformly and independently.

Uniformity:

P(h(k) = i) =
1

m

Independence:

P(h(k1) = i) = P(h(k1) = i | h(k2) = j)



Coming up:

Do Optimal BST project (suggested by Monday, Nov 21)

Due Fri, Nov 18 (end of day)
Read Sections 7.(1 & 2)
Take quiz

Due Mon, Nov 21 (end of day)
Do Project 7.1 (as practice problem)

Due Mon, Nov 28 (end of day) (recommended to be done before break)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz


