
Review

I Single-source shortest paths (last week Wednesday and Friday)

I Review for test (Today)

I Test 1 (Wednesday)

I Begin binary search trees (Friday)

Today:

I What I want you to know

I Correctness
I Efficiency
I ADTs and data structures (including case studies)
I Graphs

I What kind of questions to expect



Consider the following code fragment from an implementation of counting sort:

def counting_sort(sequence):

max_val = sequence[0]

i = 1

while i < len(sequence):

if max_val < sequence[i] :

max_val = sequence[i]

i = i + 1

counts = [0 for i in range(max_val + 1)]

i = 0

while i < len(sequence) :

counts[sequence[i]] += 1

i += 1

...

Let n be the length of sequence.
Give a useful loop invariant for the first loop.
Give the running time of the first loop as a big-Oh category.
Give a useful loop invariant for the second loop.
Give the running time of the second loop as a big-Oh category.
What abstract data type is the counts array effectively acting as?



Consider this implementation of binary search:

public static int binarySearch(List<String> seq, String item) {

int low = 0,

high = seq.size(),

mid = (low + high) / 2;

int compare = item.compareTo(seq.get(mid));

while (compare != 0 && high - low > 1) {

if (compare < 0) high = mid;

else low = mid;

mid = (low + high) / 2;

compare = item.compareTo(seq.get(mid));

}

if (compare == 0) return mid;

else return -1;

}

Fill-in a chart indicating the worst-case for each item forlisted as a big-oh category,
considering the case when seq is a LinkedList and when it is an ArrayList. Let n
be the number of items in seq.
Running time of call seq.size(), running time of each call seq.get(mid), number
of iterations of the while loop, running time of entire method.



Implement a bag using a map as the internal representation. Fill-in the key and value
types for the internal map and the implementations for the methods add(), count(),
and remove(). (8 points total)

public class MapBag<E> implements Bag<E> {

Map< , > internal; // <------ Fill in those blanks

// assume there is a constructor that instantiates some class

// implementing Map to initialize internal

// Add an item to the bag, increasing its count if it's already there

public void add(E item) {

}

// How many times does this bag contain this item?

public int count(E item) {

}

// Remove (all occurrences of) an item

public void remove(E item) {

}

}





Coming up:

Do SSSP project (suggested by Friday, Oct 14)

Due Fri, Oct 21 (class time)
Read Sections 5.(1 & 2)
Do Exercises 5.(2 & 6)
Take BST quiz


