Review
» Single-source shortest paths (last week Wednesday and Friday)
> Review for test (Today)
» Test 1 (Wednesday)
» Begin binary search trees (Friday)

Today:
» What | want you to know

» Correctness

> Efficiency

» ADTs and data structures (including case studies)
» Graphs

» What kind of questions to expect



Consider the following code fragment from an implementation of counting sort:

def counting_sort(sequence):
max_val = sequence[0]
i=1
while i < len(sequence):
if max_val < sequencel[i]
max_val = sequencel[il

i=1i+1
counts = [0 for i in range(max_val + 1)]
i=0

while i < len(sequence)
counts[sequence[i]] += 1
i+=1

Let n be the length of sequence.

Give a useful loop invariant for the first loop.

Give the running time of the first loop as a big-Oh category.

Give a useful loop invariant for the second loop.

Give the running time of the second loop as a big-Oh category.
What abstract data type is the counts array effectively acting as?



Consider this implementation of binary search:

public static int binarySearch(List<String> seq, String item) {

int low = O,

high = seq.size(),

mid = (low + high) / 2;
int compare = item.compareTo(seq.get(mid));
while (compare !'= 0 && high - low > 1) {

if (compare < 0) high = mid;

else low = mid;

mid = (low + high) / 2;

compare = item.compareTo(seq.get(mid));
}
if (compare == 0) return mid;
else return -1;

}
Fill-in a chart indicating the worst-case for each item forlisted as a big-oh category,
considering the case when seq is a LinkedList and when it is an ArrayList. Let n
be the number of items in seq.
Running time of call seq.size(), running time of each call seq.get (mid), number
of iterations of the while loop, running time of entire method.



Implement a bag using a map as the internal representation. Fill-in the key and value
types for the internal map and the implementations for the methods add (), count (),
and remove (). (8 points total)
public class MapBag<E> implements Bag<E> {

Map< s > internal; /) <—————- Fill in those blanks

// assume there is a constructor that instantiates some class
// implementing Map to initialize internal

// Add an item to the bag, increasing its count if it's already there
public void add(E item) {

X
// How many times does this bag contatin this item?
public int count(E item) {

}
// Remove (all occurrences of) an item
public void remove(E item) {



Q>



Coming up:
Do SSSP project (suggested by Friday, Oct 14)

Due Fri, Oct 21 (class time)
Read Sections 5.(1 & 2)

Do Exercises 5.(2 & 6)

Take BST quiz



