
Chapter 5, Dynamic Programming:

I Introduction and sample problems (last week Wednesday)

I Principles of DP (last week Friday)

I DP algorithms, solutions to sample problems (Monday)

I Introduce optimal BSTs / review for test 2 (Today)

I Test 2, not covering DP (Friday)

I Finish up optimal BSTs (next week Monday)

Today:

I DP odds and ends

I Review for Test 2

I Introduce the optimal BST problem



Which of the following phrases uses the word programming in the same sense (or, at
least, most nearly the same sense) as the phrase dynamic programming uses the word.

I Parallel programming

I Linear programming

I eXtreme Programming

I Pair programming



Coming up:

Catch up on projects. . .

(See Schoology for practice problems for Test 2)

Due Mon, Nov 14 (end of day) (changed from Nov 9)
Do Project 6.1.b as a practice problem
Take quiz (on Section 6.4)

Due Mon, Nov 14 (end of day)
Read Section 6.5
(No quiz on Section 6.5)

Due Wed, Nov 16 (end of day)
Read Sections 7.(1 & 2)
Take quiz



Purpose and content
Test 2 assesses your problem-solving and programming ability, especially to see
how well you have learned the implementation lessons from the projects that
accompany

The test consists in one programming problem from each of the following categories
(three problems total):

I ADTs (Chapters 1–3, including array forests, heaps, bit vectors, and linear-time
sorting)

I Graphs

I BSTs

Make sure you understand bounded linear search, binary search, iterators, using array
indices as keys, breadth- and depth-first traversal, MST and SSSP concepts, BST
structure and search, and rules for balanced BST schemes.



When grading the test I will use JUnit tests as an aide to understanding your code, but
your score will not be based on the number of JUnit tests your code passes. Rather,
your submission will be scored and partial credit assessed based on conceptual pieces I
find when reading your code. You may include comments, which I will read. But since
running your code against test cases will be part of the grading process, submitting
code that doesn’t compile is unlikely to be strategic.

Unlike projects you will not have the JUnit tests I use for grading. I will give you one
or two simple JUnit tests per problem, but these will only be to clarify the problem,
analogous to a clarification like “For example, if your method is given x , it should
return y .” Whether your code passes the one given JUnit test is not a good
indicator of whether your solution is correct. Of course you may write your own
JUnit tests, though time constraints may make that difficult.



Optimal binary search trees

Why this problem?

I It connects dynamic programming with the quest for a better map.

I Its hardness is in the right places (building the table—hard; reconstructing
solution—trivial).

I It is a representative of a bigger concept: What if we had more information—how
would that change the problem.

Game plan:

I Understand the problem itself

I Understand the recursive characterization

I Understand the table-building algorithm



The optimal binary search tree problem:

I Assume we know all the keys k0, k1, . . . kn−1 ahead of time.

I Assume further that we know the probabilities p0, p1, . . . pn−1 of each key’s
lookup.

I Assume even further that we know the “miss probabilities” q0, q1, . . . qn where qi
is the probability that an extraneous key falling between ki−1 and ki will be
looked up.

I We want to build a tree to minimize the expected cost of a look up, which is the
total weighted depth of the tree:

n−1∑
i=0

pi depth(ki ) +
n∑

i=0

qi depth(mi )

where depth(x) is the number of nodes to be inspected on the route from the
root to node x , ki stands for the node containing key ki [notational abuse], and
mi is the dummy node between keys ki−1 and and ki .

I Note that the rules of probability require
∑n−1

i=0 pi +
∑n

i=0 qi = 1



i 84 eat 24 ham 10 fox 7 rain 4
not 83 will 21 there 9 on 7 see 4
them 61 sam 19 train 9 tree 6 try 4
a 59 with 19 anywhere 8 say 5 boat 3
like 44 am 16 house 8 so 5 that 3
in 40 could 14 mouse 8 be 4 are 2
do 36 here 11 or 8 goat 4 good 2
you 34 the 11 box 7 let 4 thank 2
would 26 eggs 10 car 7 may 4 they 2
and 24 green 10 dark 7 me 4 if 1



Key or miss event combined frequency
{ } 0
a 59

{ am and anywhere are be boat box car could dark } 92
do 36

{ eat eggs fox goat good green ham here house } 86
i 84

{ if let } 5
in 40
{ } 0

like 44
{ may me mouse } 16

not 83
{ on or rain same say see so thank that the } 65

then 61
{ there they train tree try will with would } 99

you 34
{ } 0



0 1 2 3 4 5 6 7
ki a do i in like not then you

pi .073 .045 .104 .05 .055 .103 .076 .042
qi .001 .113 .107 .006 .001 .02 .081 .122 .001

.001 .113 .107 .006

i .104a .073

do .045

.001

like .055

you .042

then .076

not .103

.02 .081

.122

.001

in .05

you .042

.122 .001

.107a .073

.113.001

do .045

i .104

then .076

in .05

.001.006

.02

like .055

not .103

.081


