Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (Oct 14 \& 21)
- AVL trees (Oct 21 \& 24)
- Traditional red-black trees (last week Wed, Oct 26)
- Left-leaning red-black trees (last week Fri, Oct 28)
- "Wrap-up" BSTs, B-trees (Today)
- Begin dynamic programming (Wednesday)
- Test 2 Friday, Nov 11

Today:

- Finish red-black trees
- B-tree origin stories
- Two-three trees
- Sorted arrays
- Linked/array hybrid
- B-tree definition
- B-tree implementation

$$
\therefore \quad \therefore
$$

$$
\sigma \dot{\theta} \cdot \sigma \cdot{ }^{\circ} \therefore \bullet
$$

Formally, a B-tree with maximum degree M over some ordered key type is either

- empty, or
- a node with with $d-1$ keys and d children, designated as lists keys and children such that
- $\lceil M / 2\rceil \leq d \leq M$,
- children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
- for all $i \in[1, d-1)$, children $[i]$ is a B-tree such that all of the keys in that tree are greater than keys $[i-1]$ and less than keys $[i]$,
- and children $[d-1]$ is a B-tree such that all of the keys in that tree are greater than keys[d -2$]$.

$$
\begin{aligned}
\underbrace{\text { node }}_{\text {keys per }} \begin{aligned}
&(M-1) \\
& \underbrace{\sum_{i=0}^{h-1} M^{i}}_{\begin{array}{c}
\text { sum of } \\
\text { nodes } \\
\text { at each } \\
\text { level }
\end{array}} \\
&=(M-1) \frac{M^{h}-1}{M-1}=M^{h}-1 \\
& n=M^{h}-1 \\
& M^{h}=n+1 \\
& h=\log _{M}(n+1)
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
n=M^{h}-1 \\
M^{h}=n+1 \\
h=\log _{M}(n+1) \\
h=\log _{\frac{M}{2}}(n+1)=\frac{\log _{M}(n+1)}{1-\log _{M} 2}
\end{gathered}
$$

Cost of a search:

$$
\begin{aligned}
\lg M \cdot h & =\lg M \cdot \frac{\log _{M}(n+1)}{1-\log _{M} 2} \\
& =\lg M \frac{\frac{\lg (n+1)}{\lg M}}{1-\frac{\lg 2}{\lg M}} \\
& =\frac{\lg (n+1)}{1-\frac{1}{\lg M}} \\
& =\frac{\lg M}{\lg M-1} \lg (n+1)
\end{aligned}
$$

Compare: $1.44 \lg n$ for AVL trees, $2 \lg n$ for RB trees.

Let c_{0} be the cost of searching at a node (proportional to $\lg M$) and c_{1} be the cost of reading a node from memory. The the cost of an entire search is

$$
\left(c_{0}+c_{1}\right) \frac{\log _{M}(n+1)}{1-\log _{M} 2}
$$

Now, consolidate the constants by letting $d=\frac{c_{0}+c_{1}}{1-\log _{M} 2}$, and we have

$$
d \log _{M}(n+1)
$$

Coming up:

Do Traditional RB project (suggested by Fri, Nov 4)
(Recommended: Do Left-leaning RB project for your own practice)
Due Mon, Oct 31 (today (end of day) (but hopefully you've spread it out) Read Sections 5.(4-6) [some parts carefully, some parts skim, some parts optional—see Schoology]
Do Exercise 5.14
Take quiz
Due Thurs, Nov 3 (end of day)
Read Section 6.(1\&2)
Do Exercises 6.(5-7)
Take quiz
Due Fri, Nov 4 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz

