
Chapter 5, Binary search trees:

I Binary search trees; the balanced BST problem (fall-break eve; finishing Today)

I AVL trees (Today and next week Monday)

I Traditional red-black trees (next week Wednesday)

I Left-leaning red-black trees (next week Friday)

I “Wrap-up” BST (week-after Monday)

Today and Monday:

I Review BST basics

I BST performance and the balanced BST problem

I Introduction to the code base

I AVL tree definition

I AVL tree cases

I AVL tree performance



Coming up:
Catch up on older projects?
Do BST rotations project (suggested by Mon, Oct 24)
Do AVL trees project (suggested by Fri, Oct 28)

Due Fri, Oct 21 (class time)
Read Section 5.(1 & 2)
Do Exercises 5.(2 & 6)
Take quiz

Due Tues, Oct 25 (end of day)
Read Section 5.3
Do Exercises 5.(7 & 8)
Take quiz

Due Monday, Oct 31 (end of day)—but spread it out
Read Sections 5.(4-6)
Take quiz



A binary search tree (BST) over some ordered key type is either

I empty, or
I a node augmented with a key k together with two children, designated left and

right, such that
I left is a binary search tree such that all of the keys in that tree are less than or equal

to k , and
I right is a binary search tree such that all of the keys in that tree are greater than or

equal to k.

Unsorted Sorted

Find Θ(n) Θ(lg n)
Array Insert Θ(1) expected, Θ(n) worst Θ(n)

Delete Θ(n) Θ(n)

Find Θ(n) Θ(n)
Linked structure Insert Θ(1) Θ(1)

Delete Θ(1) Θ(1)



Indicate the worst-case and best-case running times for a get() operation on a map
implemented by each of the following data structures.

Worst case Best case

Array Θ(n) Θ(1)

LinkedList Θ(n) Θ(1)

BST, worst-case structure Θ(n) Θ(1)

BST, best-case structure Θ(lg n) Θ(1)
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The height of a node (or (sub)tree) is the number of nodes on any path from that
node to any leaf, inclusive.

height(c) =

{
0 if c is null
max(height(c .`) + height(c .r)) + 1 otherwise

The balance of a node is the difference between the heights of its left and right
children. In an AVL tree, each node’s subtrees’ heights must differ by at most 1:

∀ x ∈ nodes, |height(x .left)− height(x .right)| ≤ 1

A node that has balance 1 or -1 has a bias. A node that (temporarily) has balance 2 or
-2 is in violation.

(A balance less than -2 or greater than 2 shouldn’t happen even temporarily.)
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Invariant 30 (Postconditions of RealNode.put() with AVLBalancer.)
Let x be the root of a subtree on which put() is called and y be the node returned,
that is, the root of the resulting subtree. The subtree rooted at y has no violations and
the height of the subtree rooted at y is equal to or one greater than the original height
of the subtree rooted at x .

Proof. Suppose put() is called on node x in a BST using AVL balancing
which has no violations. There are three cases: x is nully, x is a RealNode

containing the key being searched for, or x is a RealNode with a different key.
We use structural induction with the first two cases as base cases.



Base case 1. Suppose x is nully, which has height 0 Then the node y
returned is a new RealNode with nully as both children, height 1, and balance
0. The subtree rooted at y has no violations and height one greater than the
original height of x .

Base case 2. Suppose x is a RealNode whose key is equal to the key used
for this put(). Then the value at node x is overwritten but node x itself is
returned (so y = x in this case) with the tree structure unchanged.

Inductive case. Suppose x is a RealNode and, without loss of generality, the
key used for this put() is greater than the key at x , and so put() is called on
the right child of x . Let h0 be the height of the tree rooted at x before this
call to put() on the right child, and let z the root of the subtree that results
from this call to put() on the right child. Our inductive hypothesis is that
the subtree rooted at z has no violations and that its height is equal to or one
greater than the height of the original right child of x .



Let h1 be the height of the tree rooted at x after the call to put() on the
right child but before the call to putFixup() with x .

Since since at most the height of its right subtree has increased by one, either
h1 = h0 or h1 = h0 + 1. By supposition, the balance of x before the call
to put() was no less than −1, since we supposed the tree had no violations.
Since at most the height of its right subtree has increased by one, the balance
of x is now no less than −2. We now have two subcases: Either the balance
of x is greater than −2 or it is equal to −2.

Suppose the balance of x is greater than −2. Then the call to putFixup()

with x returns x unchanged, which is also returned as the result of put()

(again y = x), a tree with no violations and height h1.

On the other hand, suppose the balance of x is equal to −2. Then y is a node
other than x returned by putFixup(). Let h2 be the height of the subtree
rooted at y when putFixup() returns. By inspection of the right-right and
right-left subcases given above, the subtree rooted at y has no violations and
either h2 = h1 or h2 = h1− 1. In either of those cases h2 = h0 or h2 = h0 + 1.
�
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Bh =


1 if h = 1

2 if h = 2

Bh−2 + Bh−1 + 1 otherwise

Bh+1 =


2 if h = 1

3 if h = 2

(Bh−2 + 1) + (Bh−1 + 1) otherwise

h 1 2 3 4 5 6

Bh + 1 2 3 5 8 13 21
Bh 1 2 4 7 12 20
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√
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