» (=) For all regular languages, there exists a regular grammar:
Suppose we have a regular language. Then that language is accepted by a DFA or
accepted by an NFA or generated by a regular expression.
» Construct a regular grammar (directly from the DFA/NFA, or by induction on the
structure of the regular expression)
» Prove that the constructed grammar and the given DFA/NFA /regular expression are
equivalent.
> Suppose w is accepted by the DFA/NFA /regular expression, show w is generated by
the grammar.

> Suppose w is generated by the grammar, show w is accepted by the
DFA/NFA /regular expression.

(If you suppose you have a regular expression, then the proof of equivalence can be
interwoven with the construction of the grammar, inductively in the structure of the
regular expression.)

» (<) For all regular grammars, the language generated is regular.
» Suppose we have a regular grammar.
» Construct an NFA/DFA /regular expression
» Prove the grammar and NFA are equivalent
> Suppose w is generated by the grammar, show w is accepted by the
DFA/NFA /regular expression.
> Suppose w is accepted by the DFA/NFA /regular expression, show w is generated by
the grammar.



Proof. Suppose we have a regular language generated by regular expression
R. We shall construct a regular grammar for it by induction on the structure
of R.

Case 1: Suppose R is a single character a. Then L(R) = {a}, and the
grammar S — a generates L(R).

Case 2: Suppose R is the concatenation of two regular expressions Ry and
R>. By structural induction, Ry and R, can be generated by two regular
grammars with start symbols S; and S;. Then consider the grammar that is
Jjust like the union of these two grammars except for the rules of the first
grammar that do not end in a non-terminal. For each such rule (T1 — wy)
and for each rule in the second grammar in the form S, — w» T> and

S — w3, make the new rule T1 — wiws Ty and T1 — wyws, respectively.
Note that this grammar is regular. Moreover, since the two regular grammars
generate the same languages as Ry and Ry by induction, then this new
grammar also generates the same language as R = R1R».



Case 3: Suppose R is the union of two regular expressions Ry and Ry. By
structural induction, Ry and R> can be generated by two regular grammars
with start symbols S1 and S». Then consider the grammar that is the union
of these two grammars, but with new non-terminal and start symbol S and
rules S — S1 and S — Sy. Note this grammar is regular and generates L(R).
Case 4: Suppose R is the Kleene closure of of some regular expression Ry.
By structural induction there is a regular grammar (with start symbol Sy that
generates L(R1)). Then construct the grammar just like grammar for Ry
except that it also has the rule S; — e (if it doesn't already) and that for
every rule in the form T — w, change that rule to be T — wS;. Note that
this grammar is regular and, by how it is constructed, generates the same
language as R = Ry *.



Conversely, suppose we have a regular grammar. Then construct a
non-deterministic finite automaton that has a state for every nonterminal in
the grammar.

For every rule in the grammar in the form Ty — T,, add a transition from T
to T, with e. For every rule in the form T; — a1 ... an, add states labelled
“ai,ax” ... "ap_1,a," and transitions from T to a1, ap with a1, and for all i,
1 < i < n—1, transitions from aj, aj;1 to ajy1, ajy2 With aj11; also, make
states a,_1, a, accept states. Finally, for every rule in the form

T1 — a1...anTo, do as in the previous case but instead of making a, an
accept state, add a transition from a,_1, a, to T, with a,.



Now to prove that this constructed NFA is equivalent to the grammar. First
suppose w is a string in the language generated by the grammar. That
means there exists a parse tree consistent with the grammar that yields w.
Consider any internal node in the tree, say labelled with nonterminal A,
which corresponds to a state in our construction. There must be a rule in the
grammar corresponding to the expansion at this node, either in the form

A — abc or A — abcB. If the former, then in our construction there is a
path taking those terminals to an accept state. If the latter, then in our
construction there is a path taking those terminals to a state B. Applying
this observation inductively, our constructed NFA accepts w.

On the other hand, suppose our constructed NFA accepts string w. We can
take the route of the string through the NFA and reconstruct a parse tree:
every sequence of transitions starting from a non-terminal state, ending at a
non-terminal state, and having no non-terminal states in between
corresponds to a node in the (alleged) parse tree. Each of these comes from
a rule in the grammar. [



