
I (⇒) For all regular languages, there exists a regular grammar:
Suppose we have a regular language. Then that language is accepted by a DFA or
accepted by an NFA or generated by a regular expression.

I Construct a regular grammar (directly from the DFA/NFA, or by induction on the
structure of the regular expression)

I Prove that the constructed grammar and the given DFA/NFA/regular expression are
equivalent.

I Suppose w is accepted by the DFA/NFA/regular expression, show w is generated by
the grammar.

I Suppose w is generated by the grammar, show w is accepted by the
DFA/NFA/regular expression.

(If you suppose you have a regular expression, then the proof of equivalence can be
interwoven with the construction of the grammar, inductively in the structure of the
regular expression.)

I (⇐) For all regular grammars, the language generated is regular.
I Suppose we have a regular grammar.

I Construct an NFA/DFA/regular expression
I Prove the grammar and NFA are equivalent

I Suppose w is generated by the grammar, show w is accepted by the
DFA/NFA/regular expression.

I Suppose w is accepted by the DFA/NFA/regular expression, show w is generated by
the grammar.



Proof. Suppose we have a regular language generated by regular expression
R. We shall construct a regular grammar for it by induction on the structure
of R.
Case 1: Suppose R is a single character a. Then L(R) = {a}, and the
grammar S → a generates L(R).
Case 2: Suppose R is the concatenation of two regular expressions R1 and
R2. By structural induction, R1 and R2 can be generated by two regular
grammars with start symbols S1 and S2. Then consider the grammar that is
just like the union of these two grammars except for the rules of the first
grammar that do not end in a non-terminal. For each such rule (T1 → w1)
and for each rule in the second grammar in the form S2 → w2T2 and
S → w3, make the new rule T1 → w1w2T2 and T1 → w1w3, respectively.
Note that this grammar is regular. Moreover, since the two regular grammars
generate the same languages as R1 and R2 by induction, then this new
grammar also generates the same language as R = R1R2.



Case 3: Suppose R is the union of two regular expressions R1 and R2. By
structural induction, R1 and R2 can be generated by two regular grammars
with start symbols S1 and S2. Then consider the grammar that is the union
of these two grammars, but with new non-terminal and start symbol S and
rules S → S1 and S → S2. Note this grammar is regular and generates L(R).
Case 4: Suppose R is the Kleene closure of of some regular expression R1.
By structural induction there is a regular grammar (with start symbol S1 that
generates L(R1)). Then construct the grammar just like grammar for R1

except that it also has the rule S1 → e (if it doesn’t already) and that for
every rule in the form T → w , change that rule to be T → wS1. Note that
this grammar is regular and, by how it is constructed, generates the same
language as R = R1*.



Conversely, suppose we have a regular grammar. Then construct a
non-deterministic finite automaton that has a state for every nonterminal in
the grammar.
For every rule in the grammar in the form T1 → T2, add a transition from T1

to T2 with e. For every rule in the form T1 → a1 . . . an, add states labelled
“a1, a2” . . . “an−1, an” and transitions from T1 to a1, a2 with a1, and for all i ,
1 ≤ i < n − 1, transitions from ai , ai+1 to ai+1, ai+2 with ai+1; also, make
states an−1, an accept states. Finally, for every rule in the form
T1 → a1 . . . anT2, do as in the previous case but instead of making an an
accept state, add a transition from an−1, an to T2 with an.



Now to prove that this constructed NFA is equivalent to the grammar. First
suppose w is a string in the language generated by the grammar. That
means there exists a parse tree consistent with the grammar that yields w .
Consider any internal node in the tree, say labelled with nonterminal A,
which corresponds to a state in our construction. There must be a rule in the
grammar corresponding to the expansion at this node, either in the form
A→ abc or A→ abcB. If the former, then in our construction there is a
path taking those terminals to an accept state. If the latter, then in our
construction there is a path taking those terminals to a state B. Applying
this observation inductively, our constructed NFA accepts w .
On the other hand, suppose our constructed NFA accepts string w . We can
take the route of the string through the NFA and reconstruct a parse tree:
every sequence of transitions starting from a non-terminal state, ending at a
non-terminal state, and having no non-terminal states in between
corresponds to a node in the (alleged) parse tree. Each of these comes from
a rule in the grammar. �


